Student working on basic robot arm manupulation task


Foundations of Robotics

Research in the foundational concepts of robotics and automation covers an interdisciplinary range of topics. Computational methodologies, electronics engineering, and physics are all foundational areas of robotics research. Sub-topics include simulation, kinematics, control, optimization, and probabilistic inference.

a PR2 robot from Willow Garage to investigate the potential for robots to assist older adults at home.


Human-Centered Robotics

Human-centered robotics focuses on robots that interact, assist and cooperate with humans requiring robot operation in human environments and close interaction with non-professional users. The research spans broad areas in human-robot interaction including; assistive and rehabilitation robotics, robotic systems design, wearable robotics, biomedical, surgical and clinical robots.

Hazard Robot


Field & Service Robotics

Field robots are mobile robots that operate in dynamic environments. These robots are adaptive, and responsive working in variable conditions and territories. Service Robots are fully or partially autonomous and perform tasks that are dangerous, repetitive, or hazardous. This research area also comprises simple and complex industrial robots as well as frontline service robots.

Swarm Robots


Sensing & Perception

Robotic perception is related to many applications in robotics where sensory data and artificial intelligence/machine learning (AI/ML) techniques are involved. Examples include; object detection, environment representation, scene understanding, human/pedestrian detection, activity recognition, semantic place classification, and object modeling.


A micro-bristle-bot next to a US penny for scale.


Manipulation & Locomotion

Robotic manipulation addresses the frameworks of modeling, motion planning, and control of grasp and manipulation of an object for a task. Manipulation research deals not only with the way in which the robot performs, but also the numerous operator-robot interface options. Once a task is defined, robots must be able to navigate its environment successfully. Legged, wheeled, articulated and winged are just a few of the way in robots are constructed for their specific tasks. Many of IRIM’s  faculty are working to advance robotic locomotion, creating multi-environment capable robots and bespoke design options.

a biologically-inspired soft actuator that mimics the form and functionality of Xenia soft corals. Ellen Mazumdar - ME


Soft Robotics

Soft or flexible robotics has become increasingly important in domains where safety is essential, and when robots operate in dynamic or uncertain conditions. Applications include grasping and manipulating unknown objects, and physical human-robot interaction. Approaches include the use of  polymers, such as PDMS, and embedded MEMS devices with exploratory engineering into new elastomers with different mechanical properties, metal-based shape memory alloys, additive manufacturing, bio-inspired design and unique folding techniques to build robots that move or bend in prescribed ways.