Seth Hutchinson

Seth Hutchinson

Seth Hutchinson

Executive Director of the Institute for Robotics and Intelligent Machines, Professor and KUKA Chair for Robotics

I am currently Professor and KUKA Chair for Robotics in the School of Interactive Computing, and the Executive Director of the Institute for Robotics and Intelligent machines at the Georgia Institute of Technology. I am also Emeritus Professor of Electrical and Computer Engineering at the University of Illinois at Urbana-Champaign.

seth@gatech.edu

404-385-7583

Office Location:
Klaus Advanced Computing Building | Suite 1322

Personal Page

  • College of Computing Profile
  • Google Scholar

    Research Focus Areas:
    • Autonomy
    • Shaping the Human-Technology Frontier
    Additional Research:

    Robots never know exactly where they are, what they see, or what they're doing. They live in dynamic environments, and must coexist with other, sometimes adversarial agents. Robots are nonlinear systems that can be underactuated, redundant, or constrained, giving rise to complicated problems in automatic control. Many of even the most fundamental computational problems in robotics are provably hard. Over the years, these are the issues that have driven my group's research in robotics. Topics of our research include visual servo control, planning with uncertainty, pursuit-evasion games, as well as mainstream problems from path planning and computer vision.


    IRI Connections:

    Suman Das

    Suman Das

    Suman Das

    Morris M. Bryan, Jr. Chair and Professor, Woodruff School of Mechanical Engineering
    Director, Direct Digital Manufacturing Laboratory

    suman.das@me.gatech.edu

    404.385.6027

    Office Location:
    MARC 255

    Direct Digital Manufacturing Laboratory

  • ME Profile Page
  • Google Scholar

    Research Focus Areas:
    • Additive manufacturing
    • Biomaterials
    • Conventional Energy
    • Materials and Nanotechnology
    Additional Research:
    3D printing; Additive/Advanced Manufacturing; Biomaterials; Composites; Emerging Technologies; Nanocomposites; Nanomanufacturing; Manufacturing, Mechanics of Materials, Bioengineering, and Micro and Nano Engineering. Advanced manufacturing and materials processing of metallic, polymeric, ceramic, and composite materials for applications in life sciences, propulsion, and energy. Professor Das directs the Direct Digital Manufacturing Laboratory and Research Group at Georgia Tech. His research interests encompass a broad variety of interdisciplinary topics under the overall framework of advanced design, prototyping, direct digital manufacturing, and materials processing particularly to address emerging research issues in life sciences, propulsion, and energy. His ultIMaTe objectives are to investigate the science and design of innovative processing techniques for advanced materials and to invent new manufacturing methods for fabricating devices with unprecedented functionality that can yield dramatic improvements in performance, properties and costs.

    IRI Connections:

    Omer Inan

    Omer Inan

    Omer Inan

    Professor, School of Electrical and Computer Engineering
    Linda J. and Mark C. Smith Chair, School of Electrical and Computer Engineering

    Omer T. Inan received his B.S., M.S., and Ph.D. degrees in Electrical Engineering from Stanford University in 2004, 2005, and 2009, respectively.

    He worked at ALZA Corporation in 2006 in the Drug Device Research and Development Group. From 2007-2013, he was chief engineer at Countryman Associates, Inc., designing and developing several high-end professional audio products. From 2009-2013, he was a visiting scholar in the Department of Electrical Engineering at Stanford. In 2013, he joined the School of ECE at Georgia Tech as an assistant professor.

    Inan is generally interested in designing clinically relevant medical devices and systems, and translating them from the lab to patient care applications. One strong focus of his research is in developing new technologies for monitoring chronic diseases at home, such as heart failure.

    He and his wife were both varsity athletes at Stanford, competing in the discus and javelin throw events respectively.

    omer.inan@ece.gatech.edu

    404.385.1724

    Office Location:
    TSRB 417

    INAN RESEARCH LAB

  • ECE Profile Page
  • Google Scholar

    Research Focus Areas:
    • Flexible Electronics
    • Human Augmentation
    • Medical Device Design, Development and Delivery
    • Micro and Nano Device Engineering
    • Miniaturization & Integration
    • Robotics
    Additional Research:

    Medical devices for clinically-relevant applicationsNon-invasive physiological monitoringHome monitoring of chronic diseaseCardiomechanical signalsMedical instrumentation


    IRI Connections:

    Craig Forest

    Craig Forest

    Craig Forest

    Professor

    Craig Forest is a Professor and Woodruff Faculty Fellow in the George W. Woodruff School of Mechanical Engineering at Georgia Tech where he also holds program faculty positions in Bioengineering and Biomedical Engineering. He conducts research on miniaturized, high-throughput robotic instrumentation to advance neuroscience and genetic science, working at the intersection of bioMEMS, precision machine design, optics, and microfabrication. Prior to Georgia Tech, he was a research fellow in Genetics at Harvard Medical School. He obtained a Ph.D. in Mechanical Engineering from MIT in June 2007, M.S. in Mechanical Engineering from MIT in 2003, and B.S. in Mechanical Engineering from Georgia Tech in 2001. He is cofounder/organizer of one of the largest undergraduate invention competitions in the US—The InVenture Prize, and founder/organizer of one of the largest student-run makerspaces in the US—The Invention Studio. He was a recently a Fellow in residence at the Allen Insitutte for Brain Science in Seattle WA; he was awarded the Georgia Tech Institute for BioEngineering and BioSciences Junior Faculty Award (2010) and was named Engineer of the Year in Education for the state of Georgia (2013). He is one of the inaugural recipients of the NIH BRAIN Initiative Grants, a national effort to invent the next generation of neuroscience and neuroengineering tools. In 2007, he was a finalist on the ABC reality TV show "American Inventor.”

    cforest@gatech.edu

    404.385.7645

    Office Location:
    Petit Biotechnology Building, Office 1310

    Website

  • Precision Biosystems Laboratory
  • Google Scholar

    Research Focus Areas:
    • Drug Design, Development and Delivery
    • Molecular, Cellular and Tissue Biomechanics
    • Neuroscience
    Additional Research:
    The Precision Biosystems Laboratory is focused on the creation and application of miniaturized, high-throughput, biological instrumentation to advance genetic science. The development of instruments that can nimbly load, manipulate, and measure many biological samples - not only simultaneously, but also more sensitively, more accurately, and more repeatably than under current approaches - opens the door to essential, comprehensive biological system studies. Our group strives to develop these tools, validate their performance with meaningful biological assays, and with our collaborators, pursue discoveries using the instruments. These instruments, and the discoveries they enable, could open new frontiers forthe design and control of biological systems.

    IRI Connections:

    Matthew T. Flavin

    Matthew T. Flavin; ECE

    Matthew Flavin

    Assistant Professor

    Prof. Matthew Flavin is an assistant professor in the School of Electrical and Computer Engineering at the Georgia Institute of Technology where he leads the Flavin Neuromachines Lab. Before joining the faculty at Georgia Tech, he was a postdoctoral researcher at Northwestern University. He received his M.S. and Ph.D. degrees in Electrical Engineering in 2017 and 2021 from the Massachusetts Institute of Technology (MIT), and he received his B.S. in Electrical Engineering in 2015 from the University of Illinois at Urbana-Champaign (UIUC). He received the NIH Ruth L. Kirschstein Institutional National Research Service Award (T32) and the Draper Laboratory Fellowship. The vision for his independent research program is to develop powerful peripheral neural interfaces and mechatronic wearables that leverage advanced sensors and intelligent systems to address important and unresolved challenges in patient care.

    mflavin@gatech.edu

    Office Location:
    Van Leer 325A

    Lab Website

    Google Scholar

    Additional Research:
    • Bioengineering
    • Biotechnology
    • Communications
    • Computer Engineering
    • Cyber Technology
    • Cyber-Physical Systems
    • Drug Design, Development and Delivery
    • Electronic Materials
    • Energy Harvesting
    • Flexible Electronics
    • Healthcare
    • Human Augmentation
    • Human-Centered Robotics
    • IoT for Manufacturing
    • IoT/Machine-to-Machine Trust
    • Lifelong Health and Well-Being
    • Locomotion & Manipulation
    • Machine Learning
    • Medical Device Design, Development and Delivery
    • Micro and Nano Device Engineering
    • Miniaturization & Integration
    • Mobile & Wireless Communications
    • Neuroscience
    • Precision Machining
    • Regenerative Medicine
    • Robotics
    • Soft Robotics

    IRI Connections:

    Xing Xie

    Xing Xie

    Xing Xie

    Carlton S. Wilder Junior Professor, School of Civil and Environmental Engineering
    Assistant Professor, School of Civil and Environmental Engineering

     Xing Xie is the Carlton S. Wilder Assistant Professor in the School of Civil and Environmental Engineering at Georgia Institute of Technology. Prior to joining Georgia Tech, he was a post-doctoral scholar at California Institute of Technology. He received his B.S. (2006) and M.S. (2008) degrees in Environmental Science & Engineering from Tsinghua University, and a second M.S. degree (2012) in Materials Science & Engineering and a Ph.D. degree (2014) in Civil & Environmental Engineering from Stanford University. His research focuses on the applications of innovative materials for sustainable and reliable water and energy. He has worked on many projects related to water treatment and reuse, microbial detection and quantification, energy and resource recovery, energy storage, etc. He has published more than 60 peer-reviewed articles with more than 6,000 citations

    xing.xie@ce.gatech.edu

    404.894.9723

    Office Location:
    ES&T 3236

    CEE Profile Page

  • Personal Research Site
  • Google Scholar

    Research Focus Areas:
    • Miniaturization & Integration
    • Nanomaterials
    • Social & Environmental Impacts
    Additional Research:
    Water & wastewater treatment; Energy & resources recovery; Energy storage; Salinity energy & desalination; self-sustained sanitation; Oil-water separation; Environmental monitoring

    IRI Connections:

    Chengzhi Shi

    Chengzhi Shi

    Chengzhi Shi

    Assistant Professor

    Dr. Shi joined Georgia Tech in August 2018 as an assistant professor. Prior, he worked as a graduate student researcher at the Department of Mechanical Engineering of the University of California, Berkeley and Materials Science Division of Lawrence Berkeley National Laboratory focusing on the study of acoustic angular momentum and the design and realization of acoustic metamaterials and high-speed acoustic communication. His Ph.D. dissertation (2018) focuses on the development of acoustic metamaterials and the physics of the angular momentum of sound. Prior to his Ph.D. study at the Department of Mechanical Engineering of the University of California, Berkeley, Dr. Shi completed his M.S. degree in mechanical engineering at the University of Michigan-Shanghai Jiao Tong University Joint Institute in Shanghai, China. His M.S. thesis (2013) focuses on the dynamics and vibration of cyclically symmetric rotating mechanical systems.

    chengzhi.shi@me.gatech.edu

    404-894-2558

    Office Location:
    003 Love Manufacturing Building

    Departmental Bio

  • Laboratory Site
  • Research Focus Areas:
    • Biomaterials
    • Molecular, Cellular and Tissue Biomechanics
    • Neuroscience
    Additional Research:
    Acoustic wave interactions with different cells including neurons, and imaging and treatment techniques resulted from the interactions.

    IRI Connections:

    Margaret Kosal

    Margaret Kosal

    Margaret Kosal

    Associate Professor
    Director, Sam Nunn Security Program
    Editor-in-Chief, Politics and the Life Sciences

    Margaret E. Kosal's research explores the relationships among technology, strategy, and governance. Her research focuses on two, often intersecting, areas: reducing the threat of weapons of mass destruction (WMD) and understanding the role of emerging technologies for security. Her work aims to understand and explain the role of technology and technological diffusion for national security at strategic and operational levels. In the changing post-Cold War environment, the most advanced military power no longer guarantees national or international security in a globalized world in which an increasing number of nation-states and non-state actors have access to new and potentially devastating dual-use capabilities. The long-term goals of her work are to understand the underlying drivers of technological innovation and how technology affects national security and modern warfare. She is interested in both the scholarly, theoretical level discourse and in the development of new strategic approaches and executable policy options to enable US dominance and to limit the proliferation of unconventional weapons. On the question of understanding the impact of emerging technology on national and international security her research considers what role will nanotechnology, cognitive science, biotechnology, and converging sciences have on states, non-state actors, balance of power, deterrence postures, security doctrines, nonproliferation regimes, and programmatic choices. Through examination of these real applications on the science (benign and defensive) and potential (notional) offensive uses of nanotechnology, she seeks to develop a model to probe the security implications of this emerging technology. The goal of the research is not to predict new specific technologies but to develop a robust analytical framework for assessing the impact of new technology on national and international security and identifying policy measures to prevent or slow proliferation of new technology - the next generation “WMD” - for malfeasant intentions. Kosal is the author of Nanotechnology for Chemical and Biological Defense (Springer Academic Publishers, 2009), which explores scenarios and strategies regarding the benefits and potential proliferation threats of nanotechnology and other emerging sciences for international security. She is also Director of the Sam Nunn Security Fellows Program and Co-Director of the Program on Emerging Technology within the Center for International Strategy, Technology, and Policy (CISTP).  Kosal was recently appointed Adjunct Scholar to the Modern War Institute at the US Military Academy/West Point. From 2012-2013, she as a senior advisor to the Chief of Staff of the US Army as part of his inaugural Strategic Studies Group (SSG). Before joining the Sam Nunn School of International Affairs, she was Science and Technology Advisor within the Office of the Secretary of Defense (OSD). Kosal also served as the first liaison to the Biological and Chemical Defense Directorate at the Defense Threat Reduction Agency (DTRA). She has been recognized for her leadership across the U.S. federal government, specifically for efforts to coordinate across the DoD as part of the interagency Nonproliferation and Arms Control Technology Working Group, reporting to the National Security Council (NSC), and as member of the interagency federal group charged with leading the National Nanotechnology Initiative (NNI). Kosal was nominated to and led the U.S. involvement in the NATO Nanotechnology for Defense Working Group. Her awards include the 2015 CETL/BP Junior Faculty Teaching Excellence Award, 2014 Georgia Tech Junior Faculty Outstanding Undergraduate Research Mentor Award, 2012 Ivan Allen Jr Legacy Award, 2010 INTAGO Faculty Award, CETL Class of 1969 Teaching Scholar, the OSD Award for Excellence, 2007 UIUC Alumni Association Recent Alumni Award, the President’s Volunteer Service Award, American Association for the Advancement of Science (AAAS) Defense Policy Fellow, and the Society of Porphyrins and Phthalocyanines Dissertation Research Award. Currently, she serves on the editorial board of the scholarly journals Studies in Conflict and Terrorism, the Journal of Strategic Security, the Journal of Defense Management, and Global Security: Health Science and Policy. Education: Ph.D., Chemistry, University of Illinois at Urbana-Champaign B.S., Chemistry, University of Southern California Awards and Distinctions: Senior Adjunct Scholar to the Modern War Institute at the U.S. Military Grand Challenges Faculty Fellow, AY2015-2016 & AY 2016-2017 2015-2016 CETL Class of 1969 Teaching Scholar 2015 CETL/BP Junior Faculty Teaching Excellence Award Gold Star Award in Recognition of the Highest Level of Accomplishment in Research, Ivan Allen College of Liberal Arts Dean Griffith Teaching Recognition – “Thank a Teacher” Award 2014 Georgia Tech Junior Faculty Outstanding Undergraduate Research Mentor Award Ivan Allen Jr. Legacy Faculty Award, 2012 INTAGO Faculty of the Year, 2010 Office of the Secretary of Defense Award for Excellence, 2007 University of Illinois at Urbana-Champaign Recent Alumni Award, 2007 President’s Volunteer Service Award, 2007 American Associatio for the Advancement of Science (AAAS) Science & Technology Fellowship, 2005-2007 American Chemical Society’s Chemical and Engineering News Top 2002 Supramolecular Chemistry research paper Areas of Expertise: Biotechnology Emerging Technology Military Nanotechnology National Security Nonproliferation Nuclear Weapons Terrorism US Foreign & Defense Policy

    margaret.kosal@inta.gatech.edu

    404-894-9664

    Office Location:
    Habersham 303

    Website

  • Related Site
  • Google Scholar

    Research Focus Areas:
    • Cybersecurity Public Policy
    • Delivery & Storage
    • Policy & Economics
    Additional Research:
    Defense / National Security; Cyber Technology; Policy/Economics

    IRI Connections:

    Gleb Yushin

    Gleb Yushin

    Gleb Yushin

    Professor, School of Materials Science and Engineering

    Gleb Yushin is a Professor at the School of Materials Science and Engineering at Georgia Institute of Technology and a Co-Founder of several companies, including Sila Nanotechnologies, Inc.. For his contributions to materials science, Yushin has received numerous awards and recognitions, including Kavli Fellow Award, R&D 100 Award (Y-Carbon's application), Honda Initiation Grant Award, National Science Foundation CAREER Award, Air Force Office of Scientific Research Young Investigator Award, and several distinctions from National Aeronautics and Space Administration (NASA), such as Nano 50 Award. Dr. Yushin has co-authored over 30 patents and patent applications, over 100 invited presentations and seminars and over 100 publications on nanostructured Electronic Materials related applications, including papers in Science, Nature Materials and other leading journals. His current research is focused on advancing energy storage materials and devices for electronics, transportation and grid applications.

    gleb.yushin@mse.gatech.edu

    404.385.3261

    Office Location:
    Love 371

    YUSHIN GROUP

  • MSE Profile Page
  • Google Scholar

    Research Focus Areas:
    • Energy
    • Energy Generation, Storage, and Distribution
    • Energy Storage
    • Materials & Manufacturing
    • Materials and Nanotechnology
    • Materials for Energy
    • Miniaturization & Integration
    • Nanomaterials
    Additional Research:
    CharacterizationMeasurementsPhotovoltaicsPolymersProcessing, Fabrication, & ManufacturingSynthesis

    IRI Connections:

    Mark Styczynski

    Mark Styczynski

    Mark Styczynski

    Professor

    Mark Styczynski is an Associate Professor in the School of Chemical & Biomolecular Engineering at the Georgia Institute of Technology (Georgia Tech), doing research at the interface of synthetic and systems biology as applied to metabolic systems. His synthetic biology work focuses on the development of low-cost, minimal-equipment biosensors for the diagnosis of nutritional deficiencies in the developing world. His systems biology work uses computational and experimental methods to characterize metabolic dynamics and regulation using metabolomics data. He has received young investigator awards from the NSF, DARPA, and ORAU. He has won multiple department-and institute-level teaching awards at Georgia Tech. He founded and was the first president of the Metabolomics Association of North America (MANA), and is a Council Member in the Engineering BiologyResearch Consortium.

    mark.styczynski@chbe.gatech.edu

    404-894-2825

    Office Location:
    EBB 4013

    Website

  • Related Site
  • Google Scholar

    Research Focus Areas:
    • Cancer Biology
    • Chemical Biology
    • Drug Design, Development and Delivery
    • Regenerative Medicine
    • Renewable Energy
    • Systems Biology
    Additional Research:
    Modelling and controlling metabolic dynamics and regulation (metabolic engineering). Biofuels. Systems biology-based experimental and bioinformatics analysis of metabolism Synthetic biology for the development of biosensors and diagnostics The main focus of theStyczynski groupis the experimental and computational study of the dynamics and regulation of metabolism, with ultIMaTe applications in metabolic engineering, biotechnology, and biosensors/diagnostics.

    IRI Connections: