Faisal Alamgir

Faisal Alamgir

Faisal Alamgir

Professor, School of Materials Science and Engineering
Initiative Lead, Advanced Real-time Materials Characterization

faisal.alamgir@mse.gatech.edu

404.385.3263

Office Location:
Love 373

Website

Google Scholar

Research Focus Areas:
  • Delivery & Storage
  • Fuels & Chemical Processing
  • Hydrogen Production
  • Hydrogen Utilization
  • Materials for Energy
Additional Research:
Energy Conversion, energy storage, nanomaterials, optical materials, photovoltaics, catalysis, electrical grid, energy storage

IRI Connections:

Marilyn Brown

Marilyn Brown

Marilyn Brown

Regents' Professor
Brook Byers Professor

Marilyn Brown is a Regents' and Brook Byers Professor of Sustainable Systems in the School of Public Policy. She joined Georgia Tech in 2006 after a distinguished career at the U.S. Department of Energy's Oak Ridge National Laboratory, where she led several national climate change mitigation studies and became a leader in the analysis and interpretation of energy futures in the United States. 

Her research focuses on the design and impact of policies aimed at accelerating the development and deployment of sustainable energy technologies, with an emphasis on the electric utility industry, the integration of energy efficiency, demand response, and solar resources, and ways of improving resiliency to disruptions. Her books include Fact and Fiction in Global Energy Policy (Johns Hopkins University Press, 2016), Green Savings: How Policies and Markets Drive Energy Efficiency (Praeger, 2015), and Climate Change and Global Energy Security (MIT Press, 2011). She has authored more than 250 publications. Her work has had significant visibility in the policy arena as evidenced by her numerous briefings and testimonies before state legislative bodies and Committees of both the U.S. House of Representatives and Senate.

Dr. Brown co-founded the Southeast Energy Efficiency Alliance and chaired its Board of Directors for several years. She has served on the Boards of the American Council for an Energy-Efficient Economy and the Alliance to Save Energy, and was a commissioner with the Bipartisan Policy Center. She has served on eight National Academies committees and is an Editor of Energy Policy and an Editorial Board member of Energy Efficiency and Energy Research and Social Science. She served two terms (2010-2017) as a Presidential appointee and regulator on the Board of Directors of the Tennessee Valley Authority, the nation’s largest public power provider. From 2014-2018 she served on DOE’s Electricity Advisory Committee, where she led the Smart Grid Subcommittee.

marilyn.brown@pubpolicy.gatech.edu

(404) 385-0303

Website

Google Scholar

Research Focus Areas:
  • Biobased Materials
  • Biochemicals
  • Biorefining
  • Biotechnology
  • Energy & Water
  • Energy Generation, Storage, and Distribution
  • Energy Utilization and Conservation
  • Hydrogen Equity
  • Materials for Energy
  • Policy & Economics
  • Pulp Paper Packaging & Tissue
  • Social & Environmental Impacts
  • Sustainable Manufacturing
  • Use & Conservation
Additional Research:
Hydrogen Equity; ClIMaTe/Environment; Electrical Grid; Policy/Economics; Energy & Water

IRI Connections:

Sheng Dai

Sheng Dai

Sheng Dai

Assistant Professor

Sheng Dai, Ph.D., P.E., earned his degrees from Tongji University and Georgia Tech. He worked as an ORISE postdoc at the National Energy Technology Laboratory of the U.S. Department of Energy, and returned to Georgia Tech as a faculty member in 2015. He is currently an associate professor in the School of Civil and Environmental Engineering, Ocean Science and Engineering. and holds a courtesy appointment at the School of Earth and Atmospheric Sciences at Georgia Tech.

Dr. Dai's group addresses emerging energy and environment challenges through studying subsurface geomechanics, geomaterials characterization, energy geotechnics, bio-inspired geotechnics, flow in porous media, and granular dynamics. His research has been funded by federal funding agencies (DOE, NSF, NASA, DOT), national labs (INL, NETL), and industry (AECOM, GTI, Leidos).  Dr. Dai has been recognized for his research and teaching, including being a recipient of the NSF CAREER award, the ORISE Fellowship, the Bill Schutz Junior Faculty Teaching Award, and the Class of 1969 Teaching Fellows at Georgia Tech.

He is an associated editor of the Journal of Geophysical Research: Solid Earth and Advances in Geo-Energy Research, an editorial advisor of Geomechanics for Energy and Environment, and serves on the Pressure Core Advisory Board for U.S. Geological Survey, the GOM2 Marine Test Technical Advisory Committee for UT/DOE, the National Gas Hydrate Program for NETL, and the Task Force Leader of TC308 Energy Geotechnics of ISSMGE. 

sheng.dai@ce.gatech.edu

(404)385-4757

Website

University, College, and School/Department
Research Focus Areas:
  • Energy Generation, Storage, and Distribution
  • Hydrogen Storage & Transport
Additional Research:
Oil/Gas; Combustion; Electronics; Energy Harvesting; Energy Storage; Thermal Systems

IRI Connections:

Nian Liu

Nian Liu

Nian Liu

Assistant Professor

Nian Liu began as an Assistant Professor at Georgia Institute of Technology, School of Chemical and Biomolecular Engineering in January 2017. He received his B.S. in 2009 from Fudan University (China), and Ph.D. in 2014 from Stanford University, where he worked with Prof. Yi Cui on the structure design for Si anodes for high-energy Li-ion batteries. In 2014-2016, he worked with Prof. Steven Chu at Stanford University as a postdoc, where he developed in situ optical microscopy to probe beam-sensitive battery reactions. Dr. Liu 's lab at Georgia Tech is broadly interested in the combination of nanomaterials, electrochemistry, and light microscopy for understanding and addressing the global energy challenges. Dr. Liu is the recipient of the Electrochemical Society (ECS) Daniel Cubicciotti Award (2014) and American Chemical Society (ACS) Division of Inorganic Chemistry Young Investigator Award (2015).

nliu82@mail.gatech.edu

404-894-5103

Office Location:
ES&T 1230

Website

  • Related Site
  • Google Scholar

    Research Focus Areas:
    • Biomaterials
    • Hydrogen Production
    • Miniaturization & Integration
    • Nanomaterials
    • Optics & Photonics
    • Semiconductors
    Additional Research:
    Electronic Systems; Packaging and Components; Nanostructures & Materials; Optoelectronics Photonics & Phononics; Semiconductors; Materials & Processes

    IRI Connections:

    Andrei Fedorov

    Andrei Fedorov

    Andrei Fedorov

    Professor and Rae S. and Frank H. Neely Chair, Woodruff School Mechanical Engineering
    Associate Chair for Graduate Studies, School Mechanical Engineering
    Director, Fedorov Lab

    Fedorov's background is in thermal/fluid sciences, chemical reaction engineering as well as in applied mathematics. His laboratory works at the intersection between mechanical and chemical engineering and solid state physics and analytical chemistry with the focus on portable/ distributed power generation with synergetic CO2 capture; thermal management of high power dissipation devices and electronics cooling; special surfaces and nanostructured interfaces for catalysis, heat and moisture management; and development of novel bioanalytical instrumentation and chemical sensors. Fedorov joined Georgia Tech in 2000 as an assistant professor after finishing his postdoctoral work at Purdue University.

    AGF@gatech.edu

    404.385.1356

    Office Location:
    Love 307

    Fedorov Lab

  • ME Profile Page
  • Google Scholar

    Research Focus Areas:
    • Cancer Biology
    • Conventional Energy
    • Drug Design, Development and Delivery
    • Electronic Materials
    • Fuels & Chemical Processing
    • Hydrogen Production
    • Hydrogen Storage & Transport
    • Hydrogen Utilization
    • Materials for Energy
    • Miniaturization & Integration
    • Nuclear
    • Regenerative Medicine
    • Systems Biology
    • Use & Conservation
    Additional Research:
    Heat Transfer; power generation; CO2 Capture; Catalysis; fuel cells; "Fedorov's research is at the interface of basic sciences and engineering. His research portfolio is diverse, covering the areas of portable/ distributed power generation with synergetic carbon dioxide management, including hydrogen/CO2 separation/capture and energy storage, novel approaches to nanomanufacturing (see Figure), microdevices (MEMS) and instrumentation for biomedical research, and thermal management of high performance electronics. Fedorov's research includes experimental and theoretical components, as he seeks to develop innovative design solutions for the engineering systems whose optimal operation and enhanced functionality require fundamental understanding of thermal/fluid sciences. Applications of Fedorov's research range from fuel reformation and hydrogen generation for fuel cells to cooling of computer chips, from lab-on-a-chip microarrays for high throughput biomedical analysis to mechanosensing and biochemical imaging of biological membranes on nanoscale. The graduate and undergraduate students working with Fedorov's lab have a unique opportunity to develop skills in a number of disciplines in addition to traditional thermal/fluid sciences because of the highly interdisciplinary nature of their thesis research. Most students take courses and perform experimental and theoretical research in chemical engineering and applied physics. Acquired knowledge and skills are essential to starting and developing a successful career in academia as well as in many industries ranging from automotive, petrochemical and manufacturing to electronics to bioanalytical instrumentation and MEMS."

    IRI Connections:

    Seung Soon Jang

    Seung Soon Jang

    Seung Soon Jang

    Professor, School of Materials Science and Engineering
    Director, Computational NanoBio Technology Lab

    Seung Soon Jang joined the School of Materials Science and Engineering at the Georgia Institute of Technology in July 2007. Jang worked at Samsung Electronics and the Materials and Process Simulation Center (MSC) at CalTech performing various researches in nanoelectronics, fuel cell, and interfacial systems as a director of Supramolecular Technology for six years.

    His research interest includes computations and theories to characterize and design nanoscale systems based on the molecular architecture-property relationship, which are especially relevant to molecular electronics, molecular machines, fuel cell technology and biotechnology.

    SeungSoon@mse.gatech.edu

    404.385.3356

    Office Location:
    Love 351

    MSE Profile Page

  • Computational NanoBio Technology Lab
  • Google Scholar

    Research Focus Areas:
    • Computational Materials Science
    • Drug Design, Development and Delivery
    • Hydrogen Production
    • Hydrogen Utilization
    • Molecular, Cellular and Tissue Biomechanics
    • Nanomaterials
    Additional Research:
    Jang's research interest is to characterize and design nanoscale systems based on the molecular architecture-property relationship using computations and theories, which are especially relevant to designing new biomaterials for drug delivery and tissue engineering. Currently, he is focusing on 1) NanoBio-mechanics for DNA, lipid bilayer, and hydrogel systems; 2) Molecular interaction of Alzheimer proteins with various small molecules. Dr. Jang is also interested in various topics such as nanoelectronics, nanostructured energy technologies for fuel cell, battery and photovoltaic devices.;Computational mechanics; Nanostructured Materials; Polymeric composites; Biomaterials; Fuel Cells; Delivery and Storage

    IRI Connections:

    Timothy Charles Lieuwen

    Timothy Charles Lieuwen

    Timothy Charles Lieuwen

    Interim Executive Vice President for Research
    Regents' Professor

    Tim Lieuwen is the interim executive vice president for Research (EVPR) at the Georgia Institute of Technology. In this role, he oversees the Institute’s $1.37 billion portfolio of research, economic development, and sponsored activities. This includes leadership of the Georgia Tech Research Institute (GTRI), the Enterprise Innovation Institute, nine interdisciplinary research institutes (IRIs), and related research administrative support units.

    In his 25-plus years at Georgia Tech, Lieuwen earned his master's and Ph.D. degrees in mechanical engineering (1996 and 1999, respectively) and has held multiple leadership positions. He has been the executive director of the Strategic Energy Institute (SEI) since 2012 and began serving as the interim chair of the Daniel Guggenheim School of Aerospace Engineering in 2023.

    Lieuwen has received numerous honors and recognition for his work in clean energy systems and policy, national security, and regional economic development. Additionally, he has been awarded the titles of Regents’ Professor and the David S. Lewis, Jr. Chair in AE. He is also a member of the National Academy of Engineering and is a fellow of the American Society of Mechanical Engineers and the American Institute of Aeronautics and Astronautics.

    tim.lieuwen@aerospace.gatech.edu

    (404) 894-3041

    Office Location:
    Guggenheim Building, Room 363

    Website

    Research Focus Areas:
    • Aerospace
    • Conventional Energy
    • Hydrogen Equity
    • Hydrogen Leadership
    • Hydrogen Utilization
    Additional Research:

    Acoustics; Fluid Mechanics; Combustion; Signal Processing


    IRI Connections:

    Valerie Thomas

    Valerie Thomas

    Valerie Thomas

    Anderson-Interface Chair of Natural Systems
    Professor
    RBI Initiative Lead: Sustainability Analysis

    Valerie Thomas is the Anderson-Interface Chair of Natural Systems and Professor in the H. Milton School of Industrial and Systems Engineering, with a joint appointment in the School of Public Policy. 

    Dr. Thomas's research interests are energy and materials efficiency, sustainability, industrial ecology, technology assessment, international security, and science and technology policy. Current research projects include low carbon transportation fuels, carbon capture, building construction, and electricity system development. Dr. Thomas is a Fellow of the American Association for the Advancement of Science, and of the American Physical Society. She has been an American Physical Society Congressional Science Fellow, a Member of the U.S. EPA Science Advisory Board, and a Member of the USDA/DOE Biomass Research and Development Technical Advisory Committee. 

    She has worked at Princeton University in the Princeton Environmental Institute and in the Center for Energy and Environmental Studies, and at Carnegie Mellon University in the Department of Engineering and Public Policy.

    Dr. Thomas received a B. A. in physics from Swarthmore College and a Ph.D. in theoretical physics from Cornell University.

    valerie.thomas@isye.gatech.edu

    (404) 894-0390

    ISyE Profile

  • Website
  • Research Focus Areas:
    • Biobased Materials
    • Biochemicals
    • Biorefining
    • Biotechnology
    • Gigatechnology
    • Hydrogen Storage & Transport
    • Hydrogen Utilization
    • Pulp Paper Packaging & Tissue
    • Renewable Energy
    • Social & Environmental Impacts
    • Sustainable Engineering
    • Sustainable Manufacturing
    • Use & Conservation
    Additional Research:
    Hydrogen Transport/Storage; Biofuels; ClIMaTe/Environment; Electric Vehicles; System Design & Optimization; Energy and Materials Efficiency; Sustainability; Industrial Ecology; Technology Assessment; Science and Technology Policy

    IRI Connections:

    Vigor Yang

    Vigor Yang

    Vigor Yang

    Regents Professor

    Vigor Yang earned his Ph.D. from the California Institute of Technology in 1984. After serving for one year as a research fellow in Jet Propulsion at Caltech, he joined the Pennsylvania State University in August 1985, becoming the John L. and Genevieve H. McCain Chair in Engineering in 2006. In 2009, he began his tenure as the William R.T. Oakes Professor Chair at the Daniel Guggenheim School of Aerospace Engineering at the Georgia Tech. He retired from the chair position and returned to teaching and research in August of 2018

    Yang’s research encompasses a wide spectrum of topics, including (1) data-enabled design and data science; (2) combustion dynamics in propulsion and power-generation systems;(3) multi-fidelity modeling and simulations of fluid flows and combustion; (4) combustion of energetic materials; (5) high-pressure transport phenomena, thermodynamics and combustion, and (6) nano technologies for propulsion and energetic applications. He has established, as the principal or co-principal investigator, more than 70 research projects, including nine (9) DoD-MURI projects. He has published 10 comprehensive volumes and numerous technical papers on combustion, propulsion, energetics, and data science. He was the recipient of  the Air-Breathing Propulsion Award (2005), the Pendray Aerospace Literature Award (2008), the Propellants and Combustion Award (2009), and the von Karman Lectureship in Astronautics Award (2016) from the American Institute of Aeronautics and Astronautics (AIAA); the Worcester Reed Warner Medal (2014) from the American Society of Mechanical Engineers (ASME); and the Lifetime Achievement Award (2014) from the Joint Army, Navy, NASA, and Air Force (JANNAF) Interagency Propulsion Committee.

    Yang was the editor-in-chief of the AIAA Journal of Propulsion and Power (2001-2009) and the JANNAF Journal of Propulsion and Energetics (2009-2012). He is currently a co-editor of the Aerospace Book Series of the Cambridge University Press (2010-).  He serves, or has served, on a large number of steering committees and review/advisory boards for government agencies and universities in the U.S. and abroad. A member of the U.S. National Academy of Engineering and an academician of Academia Sinica, Dr. Yang is a fellow of the AIAA, ASME, and Royal Aeronautical Society (RAeS).

    vigor.yang@aerospace.gatech.edu

    Departmental Bio

  • Website
  • Research Focus Areas:
    • Combustion
    • Energy
    • Hydrogen
    • Hydrogen Production
    • Hydrogen Utilization
    • Materials for Energy
    • Nanomaterials
    Additional Research:
    Hydrogen Production, Hydrogen Utilization, data-enabled design, data science, combustion dynamics in propulsion and power-generation systems, multi-fidelity modeling and simulations of fluid flows and combustion, combustion of energetic materials, high-pressure transport phenomena, thermodynamics and combustion, nanotechnologies for propulsion and energetic applications

    IRI Connections:

    Andrew Medford

    Andrew Medford

    Andrew Medford

    Assistant Professor

    Dr. Medford is interested in leveraging materials informatics, statistics, and machine learning to maximize the practical impact of fundamental atomic-scale simulations in the field of surface science and catalysis. His research areas include heterogeneous catalysis, oxide surface chemistry, density functional theory, kinetic models, uncertainty quantification, and Bayesian optimization and inference.

    andrew.medford@chbe.gatech.edu

    (404) 385-5531

    Website

    Research Focus Areas:
    • Biobased Materials
    • Biochemicals
    • Biorefining
    • Biotechnology
    • Fuels & Chemical Processing
    • Hydrogen Production
    • Hydrogen Utilization
    • Materials & Manufacturing
    • Pulp Paper Packaging & Tissue
    • Sustainable Manufacturing
    Additional Research:
    Catalysis, Biochemicals, Biorefining, Chemistry, Sugars, Molecular Simulations, Computational Biology

    IRI Connections: