Anju Toor

Portrait of Anju Toor, Assistant Professor at Georgia Tech

Anju Toor

Assistant Professor

Anju Toor is a researcher in nanomaterials for energy systems. She was a Bakar Innovation Fellow at the University of California, Berkeley, and worked on printed on-chip integrated micro batteries. She earned an M.S. in Electrical Engineering and a Ph.D. in Mechanical Engineering at University of California, Berkeley.

Her research focuses on advanced energy materials, printed electronics, energy storage systems, and nanoparticle self-assembly. She has led research on flexible and stretchable batteries for next-generation Augmented/Virtual Reality applications at Meta Reality Labs. She was named EECS Rising Star and selected for The Rising Stars Women in Engineering Workshop in Asia.

As an expert in self-assembly and energy materials, she has published over 20 research publications in the most reputed platforms in the field.

anju.toor@mse.gatech.edu

Departmental Bio

Additional Research:

Research Areas: Composites, Fibers, Nanostructures, Polymers

Research Challenges: Electronics and Communications, Energy, Environment

Research Activity: Measurements, Processing, Fabrication, & Manufacturing, Synthesis


IRI Connections:

Faisal Alamgir

Faisal Alamgir

Faisal Alamgir

Professor, School of Materials Science and Engineering
Initiative Lead, Advanced Real-time Materials Characterization

faisal.alamgir@mse.gatech.edu

404.385.3263

Office Location:
Love 373

Website

Google Scholar

Research Focus Areas:
  • Delivery & Storage
  • Fuels & Chemical Processing
  • Hydrogen Production
  • Hydrogen Utilization
  • Materials for Energy
Additional Research:
Energy Conversion, energy storage, nanomaterials, optical materials, photovoltaics, catalysis, electrical grid, energy storage

IRI Connections:

Erin L. Ratcliff

Portrait of Erin L. Ratcliff

Erin Ratcliff

Professor, Materials Science and Engineering

Erin L. Ratcliff is a Full Professor in the School of Materials Science and Engineering and the School of Chemistry and Biochemistry at the Georgia Institute of Technology and holds a joint appointment at the National Renewable Energy Laboratory.  Prof. Ratliff is also the Associate Director of Scientific Continuity for Director of the currently funded Energy Frontier Research Center (EFRC) entitled “Center for Soft PhotoElectroChemical Systems (SPECS)”, a center which she directed at her prior appointment at University of Arizona.  

Her group “Laboratory for Interface Science for Printable Electronic Materials” uses a combination of applications and devices with electrochemistry, spectroscopies, microscopies, and synchrotron-based techniques to understand fundamental structure-property relationships of next-generation materials for energy conversion and storage and biosensing. Materials of interest include metal halide perovskites, π-conjugated materials, colloidal quantum dots, and metal oxides. Current research is focused on mechanisms of electron transfer and transport across interfaces, including semiconductor/electrolyte interfaces and durability of printable electronic materials.

Her research program has been funded by the Department of Energy Basic Energy Sciences, the Solar Energy Technology Office, Office of Naval Research, National Science Foundation, and the Nano Bio Materials Consortium.

eratcliff8@gatech.edu

Departmental Bio

  • Lab Page

    IRI Connections:

    Blair Brettmann

    Blair Brettmann

    Blair Brettmann

    Assistant Professor, School of Chemical and Biomolecular Engineering and Material Science and Engineering
    RBI Co-Lead: Interface of polymer science and wood-based materials

    Blair Brettmann received her B.S. in chemical engineering at the University of Texas at Austin in 2007. She received her Master’s in chemical engineering practice from MIT in 2009 following internships at GlaxoSmithKline (Upper Merion, PA) and Mawana Sugar Works (Mawana, India). Blair received her Ph.D. in chemical engineering at MIT in 2012 working with the Novartis-MIT Center for Continuous Manufacturing under Professor Bernhardt Trout. Her research focused on solid-state characterization and application of pharmaceutical formulations prepared by electrospinning. Following her Ph.D., Brettmann worked as a research engineer for Saint-Gobain Ceramics and Plastics for two years. While at Saint-Gobain she worked on polymer-based wet coatings and dispersions for various applications, including window films, glass fiber mats and architectural fabrics. Later, Brettmann served as a postdoctoral researcher in the Institute for Molecular Engineering at the University of Chicago with Professor Matthew Tirrell. Currently, Brettmann is an assistant professor with joint appointments in chemical and biomolecular engineering and Materials Science and Engineering at Georgia Tech.

    blair.brettmann@mse.gatech.edu

    404.894.2535

    Office Location:
    MoSE 31100P

    Website

  • Related Site
  • Google Scholar

    Research Focus Areas:
    • Biobased Materials
    • Biochemicals
    • Biomaterials
    • Biorefining
    • Biotechnology
    • Drug Design, Development and Delivery
    • Pulp Paper Packaging & Tissue
    • Sustainable Manufacturing
    Additional Research:

    Pharmaceuticals, polymer and fiber, printing technologies, polymers, nanocellulose applications, new materials, wet-end chemistry, manufacturing, biotechnology, cellulosic nanomaterials, chemistry, biomaterials, aerogels and hydrogels, coating, coatings and barriers, films and coatings


    IRI Connections:

    Jason Azoulay

    Jason Azoulay

    Jason Azoulay

    Associate Professor, School of Chemistry and Biochemistry
    Vasser-Woolley GRA Distinguished Investigator in Sensors and Instrumentation

    Jason Azoulay is an organic, organometallic and polymer chemist and internationally recognized leader in developing emerging semiconductor materials and devices. He has made significant contributions to the fields of polymer chemistry and materials science,bridging fundamental chemistry with real-world applications. His work focuses on the design, synthesis and characterization of advanced functional materials across numerous technology platforms, with an emphasis on organic semiconductors and conjugated polymers.

    Azoulay co-directs the Center for Organic Photonics and Electronics, and his lab adds great strength to Georgia Tech’s leadership in soft-matter and hybrid optoelectronics. His work also complements numerous efforts at Georgia Tech that develop and apply advanced functional materials. 

     


    Azoulay Group


    IRI Connections:

    Suman Datta

    Suman Datta

    Suman Datta

    Joseph M. Pettit Chair of Advanced Computing
    Professor, School of Electrical and Computer Engineering
    Georgia Research Alliance (GRA) Eminent Scholar

    Suman Datta is the Joseph M Pettit Chair of Advanced Computing and Georgia Research Alliance (GRA) Eminent Scholar and Professor in the School of Electrical and Computer Engineering at Georgia Tech. He received his B.Tech degree in electrical engineering from the Indian Institute of Technology, Kanpur, India, and his Ph.D. degree in electrical and computer engineering from the University of Cincinnati, Ohio. His research group focuses on semiconductor devices that enable new compute models such as in-memory compute, brain-inspired compute, cryogenic compute, resilient compute etc.

    From 2015 to 2022, Datta was the Stinson Endowed Chair Professor of Nanotechnology in the Electrical Engineering Department at the University of Notre Dame, where he was the Director of a multi-university microelectronics research center, ASCENT, funded by the Semiconductor Research Corporation (SRC) and the Defense Advanced Research Projects Agency (DARPA). Datta also served as the Director of a six-university research center for Extremely Energy Efficient Collective Electronics (EXCEL), funded by the SRC and National Science Foundation (NSF) to explore an alternate computing hardware that leverages continuous-time dynamics of emerging devices to execute optimization, learning, and inference tasks.

    From 2007 to 2015, he was a Professor of Electrical Engineering at The Pennsylvania State University, where his group pioneered advances in compound semiconductor-based quantum-well field effect transistors and tunneling field effect transistors.

    From 1999 to 2007, he was in the Advanced Transistor Group at Intel Corporation, where he led device R&D effort for several generations of high-performance logic transistors such as high-k/metal gate, Tri-gate and strained channel CMOS transistors. He has published over 425 journal and refereed conference papers and holds more than 187 issued patents related to semiconductor devices. In 2013, Datta was named a Fellow of the Institute of Electrical and Electronics Engineers (IEEE) for his contributions to high-performance advanced silicon and compound semiconductor transistor technologies. In 2016, he was named Fellow of the National Academy of Inventors (NAI) in recognition of his inventions that have made a tangible impact on quality of life, economic development, and the welfare of society.

    sdatta68@gatech.edu

    Office Location:
    Klaus 2360

  • ECE Profile Page
  • Google Scholar

    Research Focus Areas:
    • Semiconductors
    Additional Research:

    High-performance heterogenous compute with advanced CMOSBrain-inspired collective state computing with advanced CMOS and beyond-CMOS semiconductorsEmerging semiconductors like ferroelectric field effect transistors, insulator-to-metal phase transition oxides, high mobility semiconducting oxides for near and in-memory compute and storageSemiconductors for cryogenic computing and harsh environment computing


    IRI Connections:

    Naresh Thadhani

    Naresh Thadhani

    Naresh Thadhani

    Professor and Chair, School of Materials Science and Engineering

    Thadhani joined the faculty in the School of Materials Science and Engineering at Georgia Tech in September, 1992. His research focuses on studies of shock-induced physical, chemical, and mechanical changes for processing of novel materials and for probing the deformation and fracture response of metals, ceramics, polymers, and composites, subjected to high-rate impact loading conditions. He has developed state-of-the-art high-strain-rate laboratory which includes 80-mm and 7.62-mm diameter single-stage gas-guns, and a laser-accelerated thin-foil set-up, to perform impact experiments at velocities of 70 to 1200 m/s. The experiments employ time-resolved diagnostics to monitor shock-initiated events with nanosecond resolution employing piezoelectric and piezoresistive stress gauges, VISAR interferometry, Photonic-doppler-velocimetry, and high-speed digital imaging, combined with the ability to recover impacted materials for post-mortem microstructural characterization and determination of other properties. He has built computational capabilities employing continuum simulations for design of experiments and development and validation of constitutive equations, as well as for meso-scale discrete particle numerical analysis (using CTH and ALE3D codes) to determine the effects observed during shock compression of heterogeneous materials, using real microstructures.

    naresh.thadhani@mse.gatech.edu

    404.894.2651

    Office Location:
    Love 286

    MSE Profile Page

  • High-Strain Rate Laboratory
  • Google Scholar

    Research Focus Areas:
    • Materials and Nanotechnology
    Additional Research:

    deformation and degradation; fracture and fatigue; Ceramics; Materials Failure and Reliability; Materials In Extreme Environments; Materials Testing


    IRI Connections:

    Robert F. Speyer

    Robert F. Speyer

    Robert F. Speyer

    Professor, School of Materials Science and Engineering

    Speyer joined the MSE faculty in August, 1992 after serving on the faculty at the New York State College of Ceramics at Alfred University for six years.  He has written one book (Thermal Analysis of Materials), with another one on the way, published over 125 refereed papers and has given over 150 technical presentations.

    His present research group consists of seven graduate students and one Ph.D-level scientist. Dr. Speyer’s research has been funded by Navy, ARO, AFOSR, DARPA, Gas Research Institute, and private industry.  He was previously the president of Innovative Thermal Systems, a thermoanalytical scientific instrument company, and is presently the President of Verco Materials, a start-up company which will manufacture boron carbide armor .

    He teaches courses in Chemical Thermodynamics of Materials, Thermal and Transport Properties of Materials, and Ceramic Technology.

    robert.speyer@mse.gatech.edu

    404.894.6075

    Office Location:
    Love 260

    MSE Profile Page

    Research Focus Areas:
    • Materials and Nanotechnology
    Additional Research:

    Thermal management; Ceramics; Modeling; Fabrication


    IRI Connections:

    Mary Lynn Realff

    Mary Lynn Realff

    Mary Lynn Realff

    Associate Professor, School of Materials Science and Engineering
    Associate Chair for Undergrad Programs, School of Materials Science and Engineering

    Mary Lynn Realff is an Associate Professor of Materials Science and Engineering at Georgia Institute of Technology (Georgia Tech). She received her BS Textile Engineering from Georgia Tech and her Ph.D. in Mechanical Engineering and Polymer Science and Engineering from the Massachusetts Institute of Technology (MIT).

    Her current research is focused on Effective Team Dynamics for both undergraduate and graduate students. The Effective Team Dynamics Initiative develops curriculum and workshops that enable students to gain the competencies to work effectively in teams and for faculty to gain the competencies to guide students through challenging team dynamics is making a positive impacts at Georgia Tech.

    marylynn.realff@mse.gatech.edu

    404.894.2496

    Office Location:
    MRDC 1 4510

    MSE Profile Page

    Research Focus Areas:
    • Materials and Nanotechnology
    Additional Research:

    Polymers; Fibers; Modeling


    IRI Connections:

    Mo Li

    Mo Li

    Mo Li

    Professor, School of Materials Science and Engineering
    Director, Computational Materials Science Group

    Professor Mo Li received his Ph.D. in applied physics in 1994 from California Institute of Technology under the supervision of Professor William L. Johnson and Professor William A. Goddard.

    After a brief staying as a postdoctoral fellow at Caltech and the Argonne National Laboratory, he joined Morgan Stanley & Co. in New York. He came back to academia in 1998. From 1998 to 2001 he was an assistant professor at the Johns Hopkins University. Currently he is a professor at the Georgia Institute of Technology.

    mo.li@mse.gatech.edu

    404.385.2472

    Office Location:
    Love 365

    MSE Profile Page

  • Computational Materials Science Group
  • Google Scholar

    Research Focus Areas:
    • Computational Materials Science
    Additional Research:

    computational mechanics; micro and nanomechanics; Nanomaterials; Materials In Extreme Environments


    IRI Connections: