Loren Williams

Loren Williams
loren.williams@chemistry.gatech.edu
Website
  • Loren Williams is from Seattle. He received his B.Sc. in Chemistry from the University of Washington, where he worked in the laboratory of Martin Gouterman. He received his Ph.D. in Physical Chemistry from Duke University, where he worked the laboratory of Barbara Shaw. He was an American Cancer Society Postdoctoral Fellow at Harvard, and an NIH Postdoctoral Fellow at MIT with Alexander Rich. He is currently a Professor in the School of Chemistry and Biochemistry at Georgia Tech. Loren is a Fellow of the AAAS and of the International Society for the Study of the Origins of Life. He was previously Director of the NASA Astrobiology Institute funded RiboEvo Center and is currently Director of the NASA-funded Center for the Origins of Life (COOL). Loren is currently a Co-Lead of the Prebiotic Chemistry and Early Earth Environment Consortium (PCE3 a NASA Research Coordination Network). Loren has received the following awards: 
  • 1995 NSF Career Award 
  • 1996 Sigma Xi Best Paper from Georgia Tech 
  • 2012 Georgia Tech Student Advisement Award 
  • 2012 Petit Institute Above and Beyond Award 
  • 2013 Georgia Tech Faculty Award for Academic Outreach 
  • 2013 Georgia Tech College of Science Faculty Mentor Award 
  • 2017 Access Alley Award from Georgia Tech Disability Services for advocating for handicapped students 
  • 2019 Vasser Woolley Award for Excellence in Instruction 
  • 2020-21 Georgia Tech Outstanding Achievement in Research Program Development 
  • 2021 Fellow of the International Society for Study of the Origin of Life 
  • 2021 Petit Institute Above and Beyond Award 
  • 2022 College of Sciences, Faculty Mentor Award 
  • 2023 Fellow of the AAAS
Professor
Director, Center for the Origin of Life
Phone
404-385-6258
Office
Petit Biotechnology Building, Office 1309
Additional Research
We study folding and structure of RNA and DNA as modulated by sequence, covalent damage, anti-cancer drugs, proteins, other nucleic acid molecules. The oldest assembly in biology is the ribosome, which is a primary focus of our efforts. Ancient ribosomal structure and function, from beyond the root of the tree of life, can be inferred from extant structure/function combined with phylogeny, evolutionary theory, biophysical chemistry, bioinformatics and molecular biology. We use all of these approaches to construct models of ancient ribosomes, which we then study by biochemical methods. Three-dimensional structure, being more conserved over evolutionary time than sequence, offers some of the most important guideposts in our journeys down the base of the tree of life.
Research Focus Areas
Google Scholar
https://scholar.google.com/scholar?q=Williams,+Loren+D&btnG=&hl=en&as_sdt=0,11
Related Site
Loren
Williams
Show Regular Profile

Ravi Kane

Ravi Kane
ravi.kane@chbe.gatech.edu
Website

Ravi Kane is the Garry Betty/V Foundation Chair and GRA Eminent Scholar in Cancer Nanotechnology. He received a B.S. in Chemical Engineering from Stanford University in 1993. Also, he received an M.S. in Chemical Engineering Practice and a Ph.D. in Chemical Engineering from MIT, working with Bob Cohen and Bob Silbey. After postdoctoral research with George Whitesides in the Department of Chemistry and Chemical Biology at Harvard University, he joined Rensselaer Polytechnic Institute (RPI) as an assistant professor in 2001. He was promoted to associate professor in 2006, to full professor in 2007, and to the P.K. Lashmet Professor in 2008. He served as the head of RPI’s Howard P. Isermann Department of Chemical and Biological Engineering before moving to Georgia Tech in 2015. Prof. Kane has graduated 27 Ph.D students and contributed to over 130 scientific publications.

Professor
Garry Betty/V Foundation Chair
Georgia Research Alliance Eminent Scholar in Cancer Nanotechnology
Phone
404-385-4608
Office
EBB 5019
Additional Research
Professor Kane's groupconducts research at the interface of biotechnology and nanotechnology.The group is designing nanoscale polyvalent therapeutics and working on the molecular engineering of biosurfaces and nanostructures. A major focus of the group's research involves the design of polyvalent ligands, i.e., nanoscale scaffolds presenting multiple copies of selected biomolecules.The Kane group has made seminal contributions to a fundamental understanding of polyvalent recognition and has designed polyvalent inhibitors that are effectivein vivo.Currently, the group is designing polyvalent molecules that control stem cell fate as well as polyvalent inhibitors of pathogens such as HIV and influenza.The group is also designing nanoscale scaffolds for antigen presentation as part of novel strategies for designing vaccines.The approach could lead to the development of "universal" influenza vaccines as well as effective vaccines targeting RSV and malaria.Other interests of the group involve optogenetics — the development and application of methods that use light to control cell function — as well as the design of enzymes and nanocomposites that target antibiotic-resistant pathogens.
Google Scholar
https://scholar.google.co.uk/citations?user=QkjzSXgAAAAJ&hl=en&oi=sra
Related Site
Ravi
Kane
S.
Show Regular Profile

Levi Wood

Levi Wood
levi.wood@me.gatech.edu
Website

Dr. Wood completed his graduate training at the Massachusetts Institute of Technology. While there he worked under the guidance of Drs. H. Harry Asada and Roger Kamm to develop and use microfluidics to identify mechanisms governing vascular geometry. 

During his postdoc, Dr. Wood worked under Dr. Kevin Haigis (Beth Israel Deaconess Medical Center and Harvard Medical School) and Dr. Douglas Lauffenburger (Massachusetts Institute of Technology) to use systems biology to identify novel signaling mechanisms driving neuronal death in Alzheimer's disease and epithelial cell death during intestinal inflammation.

Associate Professor
Phone
404-385-4465
Office
Petit Biotechnology Building, Office 3303
Additional Research
Our research focuses on applying systems analysis approaches and engineering tools to identify novel clinical therapeutic targets for complex diseases. It is challenging to develop new treatments for these diseases, such as Alzheimer's disease(AD) and Traumatic Brain Injury (TBI), because they do not have a single genetic cause and they simultaneously present broad physiologic changes. By combining novel engineeredin vitroplatforms, mouse models, and multivariate computational systems analysis, we will be able to 1) capture a holistic systems-level understanding of complex diseases, and 2) isolate specific mechanisms driving disease. The ultimate goal of our laboratory is to use these tools to identify new mechanisms driving disease onset and progression that will translate to effective therapeutic strategies.
Google Scholar
https://scholar.google.com/citations?user=iK5nEOYAAAAJ&hl=en
Related Site
Levi
Wood
Show Regular Profile

Aditi Das

Aditi Das
aditi.das@chemistry.gatech.edu
Chemistry Profile

Aditi Das did her BSc. (Hons.) Chemistry from St. Stephen's College Delhi, followed by M.S. (Chemistry) from I.I.T (Kanpur). She received her Ph.D. in Chemistry from Princeton University. She did post-doctoral work with Prof. Steve Sligar. She joined University of Illinois, Urbana-Champaign (UIUC) as a tenure track assistant professor in 2012. In 2019, she was promoted to associate professor with tenure. In 2022, she joined School of Chemistry and Biochemistry at Georgia Institute of Technology as an associate professor with tenure. Her research is in the area of enzymology of oxygenases that are involved lipid metabolism and cannabinoid metabolism.

Das is recipient of an American Heart Associate (AHA) career award and has been funded by National Institute of Health (NIH - NIGMS, NIDA and NCCIH), USDA, and National Multiple Sclerosis Society (NMSS). Her research was recognized by several National awards: Young Investigator award From Eicosanoid Research Foundation, Mary Swartz Rose Young Investigator Award and E.L.R. Stokstad award from American Society for Nutrition (ASN) for outstanding research on bioactive compounds for human health. She is also the recipient of Zoetis Research Excellence Award from her college. She was a co-organizer of the International Conference on Cytochrome P450. Recently her laboratory contributed several papers on cannabinoid metabolism by p450s. In recognition of this work, she was awarded El Sohly award from the ACS-Cannabis division for excellence in Cannabis research and is invited to give plenary lecture at ISSX meeting.  Das is also a standing study section member of BBM NIH study section. 

Associate Professor
Phone
609-203-6924
Office
3306 IBB
Aditi
Das
Show Regular Profile

Thomas DiChristina

Thomas DiChristina
thomas.dichristina@biology.gatech.edu
Website

Thomas DiChristina, Ph.D., received a BS in Chemical Engineering from the University of Rochester (NY) in 1982, a MS in Chemistry from the University of Bordeaux (France) in 1984, a Ph.D. in Environmental Engineering Science from the California Institute of Technology (CA) in 1989, and a Postdoctoral Fellowship from the Woods Hole Oceanographic Institution (MA) in 1993. DiChristina has been at Professor of Microbiology in the School of Biological Sciences at Georgia Tech for 29 years. 

Professor, Microbiology, School of Biological Sciences
Phone
404.556.6829
Office
Ford Environmental and Technology Building, Room 1240
Thomas
DiChristina
Show Regular Profile

Melissa Kemp

Melissa Kemp
melissa.kemp@bme.gatech.edu
Website

Melissa Lambeth Kemp received her B.S. in Nuclear Engineering from MIT and her Ph.D. in Bioengineering from University of Washington. Dr. Kemp joined the faculty at Georgia Tech in 2006 after completing postdoctoral training at MIT. Her expertise is in computational modeling of metabolism and signal transduction, as well as developing statistical modeling tools to examine network relationships in high-dimension datasets. One major aspect of her research program linking ROS – the byproducts of aerobic metabolism – to the fundamental way that cells interpret instructions from their environment, their neighbors, and their own genetic blueprint. Specific applications of her diverse work include systems modeling of transient phosphatase oxidation of kinase cascades, patient-specific differences in cytotoxicity to redox-cycled chemotherapeutics and radiation, and the coordination of oxidative metabolism with epithelial-to-mesenchymal transition. Her research program also includes a component of developing high-throughput screening methods for assaying cue-signal-response relationships in cells and analytical tools for single cell gene expression. 

Dr. Kemp currently serves as the Research Director of the multi-site NSF Engineering Research Center “Cell Manufacturing Technologies”. In her former role as Associate Director of the NSF Science and Technology Center “Emergent Behavior of Integrated Cellular Systems”, she spearheaded the multi-site center’s computational activities by developing agent-based models of context-dependent cellular decisions to generate new hypotheses of intercellular communication in pluripotent stem cell differentiation and emergent patterning; this work continues currently in quantifying organizational principles and spatial relationships in iPSC-derived tissues from multi-omics data. Dr. Kemp’s career honors include a Whitaker Graduate Fellowship, Merck/CSBi postdoctoral fellowship, Georgia Cancer Coalition Distinguished Scholar, NIH New Innovator Award, and the CSB2 Prize for Innovative Measurement Methods from the Council for Systems Biology in Boston.

Professor
Georgia Cancer Coalition Distinguished Cancer Scholar
Phone
404-385-6341
Office
EBB 3019
Additional Research
Systems biology, computational modeling, redox metabolism and signal tranduction.The Kemp Lab is focused on understanding how metabolism influences the decisions that cells make. Aging, stem cell differentiation, cancer metastasis, and inflammation rely on progressive changes in metabolism resulting in increased levels of reactive oxygen species. Collectively, the accumulation of these molecules is known as cellular oxidation, and pathological levels are referred to as oxidative stress. Our lab develops systems biology tools for investigating how cellular oxidation influences cellular fate and interpretation of cues from the extracellular environment. We are interested in the collective behavior that arises during stem cell differentiation, immune cell responses, or drug treatments from metabolic diversity in individual cells. Because of the numerous biochemical reactions involved, we develop computational models and analytical approaches to understand how complex protein network properties are influenced by redox-sensitive proteins; these proteins typically have reactive thiol groups that are post-translationally regulated in the presence of reactive oxygen species to alter activity and/or function. Experimentally, we develop novel high-throughput single cell techniques for the detection and quantification of intracellular oxidation.
Google Scholar
https://scholar.google.com/citations?user=WUN5ok8AAAAJ&hl=en
Related Site
Melissa
Kemp
L.
Show Regular Profile

Arijit Raychowdhury

Arijit Raychowdhury
arijit.raychowdhury@ece.gatech.edu
ECE Profile Page

Arijit Raychowdhury is currently an Professor in the School of Electrical and Computer Engineering at the Georgia Institute of Technology where he joined in January, 2013. He received his Ph.D. degree in Electrical and Computer Engineering from Purdue University (2007) and his B.E. in Electrical and Telecommunication Engineering from Jadavpur University, India (2001). His industry experience includes five years as a Staff Scientist in the Circuits Research Lab, Intel Corporation, and a year as an Analog Circuit Designer with Texas Instruments Inc. His research interests include low power digital and mixed-signal circuit design, design of power converters, sensors and exploring interactions of circuits with device technologies. Raychowdhury holds more than 25 U.S. and international patents and has published over 80 articles in journals and refereed conferences. He serves on the Technical Program Committees of DAC, ICCAD, VLSI Conference, and ISQED and has been a guest associate-editor for JETC. He has also taught many short courses and invited tutorials at multiple conferences, workshops and universities. He is the winner of the Intel Labs Technical Contribution Award, 2011; Dimitris N. Chorafas Award for outstanding doctoral research, 2007; the Best Thesis Award, College of Engineering, Purdue University, 2007; Best Paper Awards at the International Symposium on Low Power Electronic Design (ISLPED) 2012, 2006; IEEE Nanotechnology Conference, 2003; SRC Technical Excellence Award, 2005; Intel Foundation Fellowship, 2006; NASA INAC Fellowship, 2004; M.P. Birla Smarak Kosh (SOUTH POINT) Award for Higher Studies, 2002; and the Meissner Fellowship 2002. Raychowdhury is a Senior Member of the IEEE

Chair, School of Electrical and Computer Engineering
ON Semiconductor Professor, School of Electrical and Computer Engineering
Phone
404.894.1789
Office
Klaus 2362
Additional Research

Design of low power digital circuits with emphasis on adaptability and resiliencyDesign of voltage regulators, adaptive clocking, and power managementDevice-circuit interactions for logic and storageAlternative compute architectures

Google Scholar
https://scholar.google.com/citations?hl=en&user=Uug6p-AAAAAJ&view_op=list_works&sortby=pubdate
LinkedIn Integrated Circuits & Systems Research Lab
Arijit
Raychowdhury
Show Regular Profile

John Peroni

John Peroni
jperoni@uga.edu
Website

Research in the Peroni laboratory focuses on the use of regenerative therapies ranging from cellular to blood derived products to treat musculoskeletal injuries, with a concentration on minimally invasive surgery such as laparoscopy, thoracoscopy and arthroscopy.

Current research project: The surgery, performed in May, is the second successful feline kidney transplant using feline adult stem cells performed at the hospital. “To the best of our knowledge, UGA is the only veterinary facility in the world to use adult stem cells in feline kidney transplantation,” said Dr. Chad Schmiedt, a board-certified small animal surgeon who heads UGA’s feline kidney transplant program.

The service laboratory is managed by research professionals Merrilee Thoresen and Jenny Mumaw, who is enrolled in the college’s doctor of veterinary medicine program and will graduate in 2016. The service is headed by Dr. John Peroni, a board-certified large animal surgeon and associate professor whose research focus includes stem cell therapeutics. Read More

Professor
Additional Research
Research in the Peroni laboratory focuses on the use of regenerative therapies ranging from cellular to blood derived products to treat musculoskeletal injuries, with a concentration on minimally invasive surgery such as laparoscopy, thoracoscopy and arthroscopy. Current research project: The surgery, performed in May, is the second successful feline kidney transplant using feline adult stem cells performed at the hospital. "To the best of our knowledge, UGA is the only veterinary facility in the world to use adult stem cells in feline kidney transplantation," said Dr. Chad Schmiedt, a board-certified small animal surgeon who heads UGA's feline kidney transplant program. The service laboratory is managed by research professionals Merrilee Thoresen and Jenny Mumaw, who is enrolled in the college's doctor of veterinary medicine program and will graduate in 2016. The service is headed by Dr. John Peroni, a board-certified large animal surgeon and associate professor whose research focus includes stem cell therapeutics.
Research Focus Areas
University, College, and School/Department
LinkedIn https://vet.uga.edu/lam/person/john_f._peroni
John
Peroni
Show Regular Profile