Doug Blough

Doug Blough

Doug Blough

Professor
Doug Blough, Ph.D., is a professor in the School of Electrical & Computer Engineering. After living in Japan for four years and graduating from the American School in Japan, Blough attended the Johns Hopkins University where he received the B.S.E.E. degree and M.S. and Ph.D. degrees in Computer Science in 1984, 1986, and 1988, respectively. From 1988 to 1999, he was first assistant and then associate professor at the University of California at Irvine, where he developed a research program focusing on the design of dependable computing systems at all levels from VLSI components to system architecture to software. In summer 1993, Blough worked on the design of a space-flight computer system under the auspices of a NASA/ASEE Faculty Fellowship and in spring 1996, he visited the Tokyo Institute of Technology on a fellowship from the Japan Society for Promotion of Science. In fall 1999, Blough joined Georgia Tech as a professor, where he continues research and education in computer systems design. He is the holder of 10 patents for wireless communications, bioinformatics and verifiable health records, identity management and other aspects of networking.

doug.blough@ece.gatech.edu

404.385.1271

Office Location:
KACB 3356

Website

Research Focus Areas:
  • Network and Security Vulnerability Analysis
  • Shaping the Human-Technology Frontier
Additional Research:
Healthcare Security; Mobile & Wireless Communications; Telecommunications; Computer Systems and Software

IRI Connections:

Raheem Beyah

Raheem Beyah

Raheem Beyah

Dean, College of Engineering
Motorola Foundation Professor

Raheem Beyah, Ph.D., is associate chair for Strategic Initiatives and Innovation, and the Motorola Foundation Professor in the School of Electrical & Computer Engineering at the Georgia Institute of Technology. His research is at the intersection of the networking and security fields. He leads the Georgia Tech Communications Assurance and Performance Group (CAP), which develops algorithms that enable a more secure network infrastructure with computer systems that are more accountable and less vulnerable to attacks. Through experimentation, simulation, and theoretical analysis, CAP provides solutions to current network security problems and to long-range challenges as current networks and threats evolve. Dr. Beyah has served as guest editor and associate editor of several journals in the areas of network security, wireless networks, and network traffic characterization and performance. He received the National Science Foundation CAREER award in 2009 and was selected for DARPA's Computer Science Study Panel in 2010. He is a member of NSBE, ASEE, and is a senior member of IEEE and ACM. Beyah is a native of Atlanta, Georgia. He received his Bachelor of Science in Electrical Engineering from North Carolina A&T State University in 1998. He received his Master's and Ph.D. in Electrical and Computer Engineering from Georgia Tech in 1999 and 2003, respectively. Prior to returning to Georgia Tech, Dr. Beyah was a faculty member in the Department of Computer Science at Georgia State University, a research faculty member with the Georgia Tech Communications Systems Center (CSC), and a consultant in Andersen Consulting's (now Accenture) Network Solutions Group.

rbeyah@ece.gatech.edu

404.894.2531

Office Location:
KACB 2308

Website

Research Focus Areas:
  • Cyber Technology
  • Network and Security Vulnerability Analysis
  • Cyber-Physical Systems
Additional Research:
Mobile & Wireless Communications; Network Science

IRI Connections:

Azadeh Ansari

Azadeh Ansari

Azadeh Ansari

Sutterfield Family Early Career Professor, School of Electrical and Computer Engineering
Assistant Professor, School of Electrical and Computer Engineering

Azadeh Ansari received the B.S. degree in Electrical Engineering from Sharif University of Technology, Iran in 2010. She earned the M.S and Ph.D. degrees in Electrical Engineering from University of Michigan, Ann Arbor in 2013 and 2016 respectively, focusing upon III-V piezoelectric semiconductor materials and MEMS devices and microsystems for RF applications. Prior to joining the ECE faculty at Georgia Tech, she was a postdoctoral scholar in the Physics Department at Caltech from 2016 to 2017. Ansari is the recipient of a 2017 ProQuest Distinguished Dissertation Award from the University of Michigan for her research on "Gallium Nitride integrated microsystems for RF applications." She received the University of Michigan Richard and Eleanor Towner Prize for outstanding Ph.D. research in 2016. She is a member of IEEE, IEEE Sensor's young professional committee and serves as a technical program committee member of IEEE IFCS 2018.

azadeh.ansari@ece.gatech.edu

404.385.5994

Office Location:
TSRB 544

Personal Research Website

  • ECE Profile Page
  • Google Scholar

    Research Focus Areas:
    • Human Augmentation
    • Miniaturization & Integration
    • Robotics
    • Semiconductors
    Additional Research:

    Sensors and actuatorsMEMS and NEMSIII-V Semiconductor devices


    IRI Connections:

    David Anderson

    David Anderson

    David Anderson

    Professor, School of Electrical and Computer Engineering

    David V. Anderson received the B.S and M.S. degrees from Brigham Young University and the Ph.D. degree from Georgia Institute of Technology (Georgia Tech) in 1993, 1994, and 1999, respectively. He is currently a professor in the School of Electrical and Computer Engineering at Georgia Tech. Anderson's research interests include audio and psycho-acoustics, machine learning and signal processing in the context of human auditory characteristics, and the real-time application of such techniques. His research has included the development of a digital hearing aid algorithm that has now been made into a successful commercial product. Anderson was awarded the National Science Foundation CAREER Award for excellence as a young educator and researcher in 2004 and the Presidential Early Career Award for Scientists and Engineers in the same year. He has over 150 technical publications and 8 patents/patents pending. Anderson is a senior member of the IEEE, and a member the Acoustical Society of America, and Tau Beta Pi. He has been actively involved in the

    david.anderson@ece.gatech.edu

    404.385.4979

    Office Location:
    TSRB 543

    ECE Profile Page

    Google Scholar

    Research Focus Areas:
    • Bioengineering
    • Biotechnology
    • Computer Engineering
    • Electronics
    • Machine Learning
    • Micro and Nano Device Engineering
    • Miniaturization & Integration
    • Optics & Photonics
    Additional Research:

    Audio and Psycho-AcousticsBio-DevicesDigital Signal ProcessingLow-Power Analog/Digital/Mixed-Mode Integrated Circuits 


    IRI Connections:

    Ghassan AlRegib

    Ghassan AlRegib

    Ghassan AlRegib

    John and Marilu McCarty Chair Professor
    Center Director

    Prof. AlRegib is currently the John and Marilu McCarty Chair Professor in the School of Electrical and Computer Engineering at the Georgia Institute of Technology. His group is the Omni Lab for Intelligent Visual Engineering and Science (OLIVES) at Georgia Tech. In 2012, he was named the Director of Georgia Tech’s Center for Energy and Geo Processing (CeGP). He is the director of the Center for Signal and Information Processing (CSIP). He also served as the Director of Georgia Tech’s Initiatives and Programs in MENA between 2015 and 2018. He has authored and co-authored more than 300 articles in international journals and conference proceedings. He has been issued several U.S. patents and invention disclosures. He is a Fellow of the IEEE.

    Prof. AlRegib received the ECE Outstanding Graduate Teaching Award in 2001 and both the CSIP Research and the CSIP Service Awards in 2003. In 2008, he received the ECE Outstanding Junior Faculty Member Award. In 2017, he received the 2017 Denning Faculty Award for Global Engagement. He and his students received the Beat Paper Award in ICIP 2019. He received the 2024 ECE Distinguished Faculty Achievement Award at Georgia Tech. He and his students received the Best Paper Award in ICIP 2019 and the 2023 EURASIP Best Paper Award for Image communication Journal.

    Prof. AlRegib participated in a number of activities. He has served as Technical Program co-Chair for ICIP 2020 and ICIP 2024. He served two terms as a member of the IEEE SPS Technical Committees on Multimedia Signal Processing (MMSP) and Image, Video, and Multidimensional Signal Processing (IVMSP), 2015-2017 and 2018-2020. He was a member of the Editorial Boards of both the IEEE Transactions on Image Processing (TIP), 2009-2022, and the Elsevier Journal Signal Processing: Image Communications, 2014-2022. He was a member of the editorial board of the Wireless Networks Journal (WiNET), 2009-2016 and the IEEE Transaction on Circuits and Systems for Video Technology (CSVT), 2014-2016. He was an Area Chair for ICME 2016/17 and the Tutorial Chair for ICIP 2016. He served as the chair of the Special Sessions Program at ICIP’06, the area editor for Columns and Forums in the IEEE Signal Processing Magazine (SPM), 2009–12, the associate editor for IEEE SPM, 2007-09, the Tutorials co-chair in ICIP’09, a guest editor for IEEE J-STSP, 2012, a track chair in ICME’11, the co-chair of the IEEE MMTC Interest Group on 3D Rendering, Processing, and Communications, 2010-12, the chair of the Speech and Video Processing Track at Asilomar 2012, and the Technical Program co-Chair of IEEE GlobalSIP, 2014. He lead a team that organized the IEEE VIP Cup, 2017 and the 2023 IEEEE VIP Cup. He delivered short courses and several tutorials at international events such as BigData, NeurIPS, ICIP, ICME, CVPR, AAAI, and WACV.

    In the Omni Lab for Intelligent Visual Engineering and Science (OLIVES), he and his group work on robust and interpretable machine learning algorithms, uncertainty and trust, and human in the loop algorithms. The group studies interventions into AI systems to enhance their trustworthiness. The group has demonstrated their work on a wide range of applications such as Autonomous Systems, Medical Imaging, and Subsurface Imaging. The group is interested in advancing the fundamentals as well as the deployment of such systems in real-world scenarios. His research group is working on projects related to machine learning, image and video processing, image and video understanding, subsurface imaging, perception in visual data processing, healthcare intelligence, and video analytics. The primary applications of the research span from Autonomous Vehicles to Portable AI-based Ophthalmology and Eye Exam and from Microscopic Imaging to Seismic Interpretation. The group was the first to introduce modern machine learning to seismic interpretation.

    In 2024, and after more than three years of continuous work, he co-founded Georgia Tech’s AI Makerspace. The AI Makerspace is a resource for the entire campus community to access AI. Its purpose is to democratize access to AI. Together with his team, they are developing tools and services for the AI Makerspace via a VIP Team called AI Makerspace Nexus. In addition, he created two AI classes from scratch with innovative hands-on exercises using the AI Makerspace. One class is the ECE4252/8803 FunML class (Fundamentals of Machine Learning) where students learn the basics of Machine Learning as well as eight weeks of Deep learning both mathematically and using hands-on exercises on real-world data. The second class is a sophomore-level AI Foundations class (AI First) that teaches any student from any college the basics of AI such as data literacy, learning, decision, planning, and ethics using theory and hands-on exercises on the AI Makerspace. Prof. AlRegib wrote two textbooks for both classes.

    Prof. AlRegib has provided services and consultation to several firms, companies, and international educational and R&D organizations. He has been a witness expert in a number of patents infringement cases and Inter Partes Review (IRP) cases.

    alregib@gatech.edu

    404-894-7005

    Office Location:
    Centergy-One Room 5224

    Website

  • Related Site
  • Google Scholar

    Research Focus Areas:
    • Bioinformatics
    • Conventional Energy
    • Machine Learning
    Additional Research:

    Machine learning, Trustworthy AI, Explainable AI (XAI), Robust Learning Systems, Multimodal Learning, Annotations Diversity in AI Systems


    IRI Connections:

    Nima Ghalichechian

    Nima Ghalichechian

    Nima Ghalichechian

    Assistant Professor, School of Electrical and Computer Engineering
    Associate Director, Georgia Electronic Design Center

    Dr. Ghalichechian joined the Georgia Institute of Technology as an Assistant Professor in August 2021. Prior to joining Georgia Tech, he was an Assistant Professor at The Ohio State University (OSU), Columbus, from 2017 to 2021. During this period, he established the RF Microsystems Laboratory with research in the area of millimeter-wave antennas and arrays.

    Dr. Ghalichechian received his B.S. in Electrical Engineering from Amirkabir University of Technology, Iran in 2001. He received his M.S. and Ph.D. in Electrical Engineering from the University of Maryland-College Park in 2005 and 2007, respectively, with research focused on electrostatic micromotors. From 2007 to 2012, he was with the Research Department of FormFactor, Inc. (Livermore, California) as a Senior Principal Engineer. During this period, he helped design and develop microsprings for advanced probe cards used in testing memory and SoC devices. Dr. Ghalichechian joined the Department of Electrical and Computer Engineering and the ElectroScience Laboratory at OSU as a Research Scientist in 2012. From 2016 to 2017, he held a Research Assistant Professor position at OSU.

    Prof. Ghalichechian is currently an Associate Editor of the IEEE Antennas and Wireless Propagation Letters (AWPL). He is a recipient of the 2018 College of Engineering Lumley Research Award at OSU, 2019 NSF CAREER Award, 2019 US Air Force Faculty Summer Fellowship Award, and 2020 ECE Excellence in Teaching Award at OSU.

    nima.1@gatech.edu

    404-894-5867

    Office Location:
    TSRB 534

    Research Group

  • Georgia Electronic Design Center (GEDC)
    Additional Research:
    Millimeter-wave (30-300 GHz) antennas and arrays5G/6G antenna systemsReconfigurable antennas and componentsOn-chip antennas and arraysReflectarrays and phased arraysExploiting non-linear properties of phase-change materials for RF sensors

    IRI Connections:

    Suman Datta

    Suman Datta

    Suman Datta

    Joseph M. Pettit Chair of Advanced Computing
    Professor, School of Electrical and Computer Engineering
    Georgia Research Alliance (GRA) Eminent Scholar

    Suman Datta is the Joseph M Pettit Chair of Advanced Computing and Georgia Research Alliance (GRA) Eminent Scholar and Professor in the School of Electrical and Computer Engineering at Georgia Tech. He received his B.Tech degree in electrical engineering from the Indian Institute of Technology, Kanpur, India, and his Ph.D. degree in electrical and computer engineering from the University of Cincinnati, Ohio. His research group focuses on semiconductor devices that enable new compute models such as in-memory compute, brain-inspired compute, cryogenic compute, resilient compute etc.

    From 2015 to 2022, Datta was the Stinson Endowed Chair Professor of Nanotechnology in the Electrical Engineering Department at the University of Notre Dame, where he was the Director of a multi-university microelectronics research center, ASCENT, funded by the Semiconductor Research Corporation (SRC) and the Defense Advanced Research Projects Agency (DARPA). Datta also served as the Director of a six-university research center for Extremely Energy Efficient Collective Electronics (EXCEL), funded by the SRC and National Science Foundation (NSF) to explore an alternate computing hardware that leverages continuous-time dynamics of emerging devices to execute optimization, learning, and inference tasks.

    From 2007 to 2015, he was a Professor of Electrical Engineering at The Pennsylvania State University, where his group pioneered advances in compound semiconductor-based quantum-well field effect transistors and tunneling field effect transistors.

    From 1999 to 2007, he was in the Advanced Transistor Group at Intel Corporation, where he led device R&D effort for several generations of high-performance logic transistors such as high-k/metal gate, Tri-gate and strained channel CMOS transistors. He has published over 425 journal and refereed conference papers and holds more than 187 issued patents related to semiconductor devices. In 2013, Datta was named a Fellow of the Institute of Electrical and Electronics Engineers (IEEE) for his contributions to high-performance advanced silicon and compound semiconductor transistor technologies. In 2016, he was named Fellow of the National Academy of Inventors (NAI) in recognition of his inventions that have made a tangible impact on quality of life, economic development, and the welfare of society.

    sdatta68@gatech.edu

    Office Location:
    Klaus 2360

  • ECE Profile Page
  • Google Scholar

    Research Focus Areas:
    • Semiconductors
    Additional Research:
    High-performance heterogenous compute with advanced CMOSBrain-inspired collective state computing with advanced CMOS and beyond-CMOS semiconductorsEmerging semiconductors like ferroelectric field effect transistors, insulator-to-metal phase transition oxides, high mobility semiconducting oxides for near and in-memory compute and storageSemiconductors for cryogenic computing and harsh environment computing

    IRI Connections:

    Waymond R. Scott

    Waymond R. Scott

    Waymond R Scott

    Joseph M. Pettit Professor, School of Electrical and Computer Engineering

    Professor Scott was born in Calhoun, GA. He received the B.E.E., M.S.E.E., and Ph.D. degrees from the Georgia Institute of Technology in 1980, 1982, and 1985, respectively.

    He joined the Georgia Tech faculty in 1986 where he teaches and performs research in the area of applied electromagnetics and acoustics. As part of the teaching, he is interested in using computers to enhance the learning experience of students and has developed computer based visualization tools and animations to help students understand some of the more difficult aspects of electromagnetics.

    waymond.scott@ece.gatech.edu

    404.894.3048

    Office Location:
    VL W307

    ECE Profile Page

  • Personal Research Site
  • Research Focus Areas:
    • Materials and Nanotechnology
    Additional Research:
    Acoustics and Dynamics; Computer-Aided Engineering; micro and nanomechanics

    IRI Connections:

    William Hunt

    William Hunt

    William Hunt

    Professor, School of Electrical and Computer Engineering
    Director, Microelectronic Acoustics Group

    Hunt grew up in the literary haven of Columbus, Mississippi, the boyhood home of Tennessee Williams, and received his B.S.E.E. from the University of Alabama in 1976. He worked for Harris Corporation for two years in the areas of acousto-optics and surface acoustic wave (SAW). He then entered the Massachusetts Institute of Technology where he earned his S.M.E.E. in 1980 and conducted research in the field of auditory physiology. After four years with Bolt, Beranek and Newman, Inc. he entered the University of Illinois, Champaign-Urbana where he received his Ph.D. in electrical engineering in 1987. His research there was on acoustic charge transport (ACT) devices and the SAW properties of Gallium Arsenide.

    Hunt joined the faculty of the Georgia Institute of Technology in the fall of 1987 as one of the original members of the Pettit Microsystems Research Center. There he founded the Microelectronic Acoustics Group which focuses on the development of ultrasonic devices that can be integrated with Microsystems. Among these have been, ACT devices, micromachined polyvinylidene fluoride-trifluoroethylene (PVDF)-based transducers for intravascular ultrasound, acousto-optic devices for tunable lasers as well as SAW and bulk acoustic wave (BAW) devices for wireless and chemical sensor applications.

    bill.hunt@ece.gatech.edu

    404.894.2945

    Office Location:
    MiRC 221

    Microelectronic Acoustics Group

  • ECE Profile Page
  • Google Scholar

    Research Focus Areas:
    • Electronic Materials
    Additional Research:
    Piezoelectronic Materials; Thin Films; Acoustics and Dynamics; Bio-Devices; Fabrication

    IRI Connections:

    William Doolittle

    William Doolittle

    William Doolittle

    Joseph M. Pettit Professor, School of Electrical and Computer Engineering

    During my research career I have observed “new” material systems develop and offer promise of wondrous device performance improvements over the current state of the art. Many of these promises have been kept, resulting in numerous new devices that could never have been dreamed of just a few short years ago. Other promises have not been fulfilled, due, in part, to a lack of understanding of the key limitations of these new material systems. Regardless of the material in question, one fact remains true: Without a detailed understanding of the electrical and optical interaction of electronic and photonic “particles” with the material and defect environment around them, novel device development is clearly impeded. It is not just a silicon world! Modern electronic/optoelectronic device designs (even silicon based devices) utilize many diverse materials, including mature dielectrics such as silicon dioxide/nitrides/oxynitrides, immature ferroelectric oxides, silicides, metal alloys, and new semiconductor compounds. Key to the continued progress of electronic devices is the continued development of a detailed understanding of the interaction of these materials and the defects and limitations inherent to each material system. It is my commitment to insure that new devices are continuously produced based on complex mixed family material systems.

    alan.doolittle@ece.gatech.edu

    404.894.9884

    Office Location:
    MIRC 209

    ECE Profile Page

  • Personal Research Site
  • Google Scholar

    Research Focus Areas:
    • Materials and Nanotechnology
    • Micro and Nano Device Engineering
    Additional Research:
    Compund semiconductors, optical materials, III-V semiconductor devices

    IRI Connections: