Suresh Sitaraman

Suresh Sitaraman

Suresh Sitaraman

Regents' Professor, Woodruff School of Mechanical Engineering
Morris M. Bryan, Jr. Professor, Woodruff School of Mechanical Engineering

Suresh Sitaraman is a Professor in the George W. Woodruff School of Mechanical Engineering, and leads the Flexible Hybrid Electronics Initiative at Georgia Tech and directs the Computer-Aided Simulation of Packaging Reliability (CASPaR) Lab at Georgia Tech. He is a Thrust Leader/Faculty Member, Reliability/Mechanical Design Research, 3D Systems Packaging Research Center; a Faculty Member, Georgia Tech Manufacturing Institute; a Faculty Member, Interconnect and Packaging Center, an SRC Center of Excellence, Institute for Electronics and Nanotechnology; a Faculty Member, Nanoscience and Nanotechnology, Nanotechnlogy Research Center, Institute for Electronics and Nanotechnology; a Faculty Member, Institute of Materials. Dr. Suresh Sitaraman's research is exploring new approaches to develop next-generation microsystems. In particular, his research focuses on the design, fabrication, characterization, modeling and reliability of micro-scale and nano-scale structures intended for microsystems used in applications such as aerospace, automotive, computing, telecommunicating, medical, etc. Sitaraman's research is developing physics-based computational models to design flexible as well as rigid microsystems and predict their warped geometry and reliability. His virtual manufacturing tools are able to simulate sequential fabrication and assembly process mechanics to be able to enhance the overall yield, even before prototypes are built. Sitaraman's work is developing free-standing, compliant interconnect technologies that can mechanically decouple the chip from the substrate without compromising the overall electrical functionality. This work is producing single-path and multi-path interconnect technologies as well as nanowire and carbon nanotube interconnects for electrical and thermal applications, and such interconnect technologies can be employed in flexible as well as 3D microelectronic systems. Sitaraman's research is also developing innovative material characterization techniques such as the stressed super layer technique as well as magnetic actuation test that can be used to study monotonic and fatigue crack propagation in nano- and micro-scale thin film interfaces. In addition, Sitaraman has developed fundamental modeling methodologies combined with leading-edge experimentation techniques to study delamination in the dielectric material and copper interface used in back-end-of-the-line (BEOL) stacks and through-silicon vias as well as epoxy/copper and epoxy/glass interfaces as in microelectronic packaging and photovoltaic module applications. Examining the long-term operational as well as accelerated thermal cycling reliability of solder interconnects, his work has direct implications in implantable medical devices, photovoltaic modules, computers and smart devices as well as rugged automobile and aerospace applications. Through the above-mentioned fundamental and applied research and development pursuits, Sitaraman's work aims to address some of the grand challenges associated with clean energy, health care, personal mobility, security, clean environment, food and water, and sustainable infrastructure

suresh.sitaraman@me.gatech.edu

404.894.3405

Office Location:
MARC 471

ME Profile Page

  • CASPaR Lab
  • Research Focus Areas:
    • Flexible Electronics
    • Micro and Nano Device Engineering
    • Miniaturization & Integration
    • Nanomaterials
    Additional Research:
    Computer-Aided Engineering; micro and nanomechanics; Fabrication; Modeling; fracture and fatigue; Flexible Electronics; Emerging Technologies

    IRI Connections:

    Olivier Pierron

    Olivier  Pierron

    Olivier Pierron

    Professor, Woodruff School of Mechanical Engineering

    Oliver Pierron joined Georgia Tech in summer 2007. Prior, he was a senior engineer at the R&D center of Qualcomm MEMS Technologies, Inc. in San Jose, California. Pierron's research group investigates the mechanical properties of small-scale materials with emphasis on the degradation properties (fracture, fatigue, creep). The scientific contribution of this research is to develop a fundamental understanding of the degradation mechanisms at the nanoscale while the engineering motivation is to assess and predict the structural reliability of devices and systems fabricated with emerging technologies. An underlying challenge is to develop experimental techniques that permit to accurately measure these properties. Pierron's research is currently sponsored by the National Science Foundation.

    olivier.pierron@me.gatech.edu

    404.894.7877

    Office Location:
    Love 228

    ME Profile Page

    Google Scholar

    Research Focus Areas:
    • Flexible Electronics
    • Materials and Nanotechnology
    • Miniaturization & Integration
    Additional Research:
    micro and nanomechanics; Micro and Nano Engineering; Thin Films; fracture and fatigue; Flexible Electronics

    IRI Connections:

    Abdallah Ougazzaden

    Abdallah Ougazzaden

    Abdallah Ougazzaden

    Professor, School of Electrical and Computer Engineering
    Director, Georgia Tech-Lorraine
    Director, International Joint Research Unit "UMI 2958 GT-CNRS"
    Co-President, Lafayette Institute

    Abdallah Ougazzaden received his masters and doctoral degrees in materials sciences and his HDR "Accreditation to Supervise Research" degree from the University of Paris VII Paris (France) in 1986, 1990 and 1996, respectively. From 1999 to 2003, he worked as a Technical Manager in the Materials Growth and Characterisations group at Bell-Labs Lucent Technologies, and with its ICs/Optoelectronics spin-off Agere Systems. From here, Ougazzaden worked for TriQuint Optoelectronics (formerly Agere Systems/Optoelectronics). Prior to joining Bell-Labs he led the MOCVD group at CNET/ France Telecom for more than 8 years and spent a year at Optoplus/Alcatel. From 2003 to 2005 he was a professor at the University of Metz and Deputy Director of Materials, Optics, Photonics and Systems (MOPS) laboratory, a joint lab of the High Engineering School SUPELEC and CNRS in Metz, France. He joined the Georgia Institute of Technology in 2005 as professor in the School of Electrical and Computer Engineering. In 2006, Ougazzaden was appointed to the position of Director of the International Joint Research Unit GT-CNRS at GTL in France and in 2010 he was appointed to the position of director of Georgia Tech-Lorraine. He is co-founder and co-president of the Lafayette Institute, Platform of Technology Transfer, created in 2012. He has authored and co-authored more than 200 international scientific papers and holds 23 patents.

    abdallah.ougazzaden@ece.gatech.edu

    +33 (0) 38720.3923

    ECE Profile Page

  • INSTITUT LAFAYETTE
  • Google Scholar

    Research Focus Areas:
    • Nanomaterials
    • Optics & Photonics
    • Semiconductors
    Additional Research:
    Epitaxial Growth; Optical Materials; III-V Semiconductor devices; Advanced Characterization; Fabrication of nanostructures; Materials characterizations

    IRI Connections:

    Sundaresan Jayaraman

    Sundaresan Jayaraman

    Sundaresan Jayaraman

    Professor, School of Materials Science and Engineering

    Sundaresan Jayaraman is a professor in the School of Materials Science and Engineering at the Georgia Institute of Technology. He is also the Founding Director of the Kolon Center for Lifestyle Innovation established at Georgia Tech in October 2016. A pioneer in bringing about convergence between textiles and computing, Jayaraman’s research has led to the paradigm of “Fabric is the Computer.” He is a leader in studying and defining the roles of engineering design, manufacturing and materials technologies in public policy for the nation. 

    Jayaraman and his research students have made significant contributions in the following areas: (i) Smart Textile-based Wearable Systems; (ii) Computer-aided Manufacturing, Automation and Enterprise Architecture Modeling; (iii) Engineering Design and Analysis of Intelligent Textile Structures and Processes; (iv) Design and Development of Knowledge Based Systems (KBS) for textiles and apparel; and (v) Design and Development of Respiratory Protection Systems. His group's research has led to the realization of the world's first Wearable Motherboard™, also known as the “Smart Shirt” (www.smartshirt.gatech.edu). This invention was featured in a Special Issue of LIFE Magazine entitled Medical Miracles for the New Millennium (Fall 1998) as One of the 21 Breakthroughs that Could Change Your Life in the 21st Century. The first Smart Shirt is now part of the Archives of the Smithsonian Museum in Washington, DC. 

    Prior to Georgia Tech, Jayaraman had the privilege of working with Dan Bricklin and Bob Frankston, the Co-Creators of the world’s first spreadsheet – VisiCalc®. VisiCalc was the first “killer app” that transformed the computing industry by bringing computing to the masses through the proliferation of personal computers. During his PhD, he was involved in the design and development of TK!Solver, the world’s first equation-solving program from Software Arts, Inc., Cambridge, MA. He worked there as a Product Manager and then at Lotus Development Corporation (makers of 1-2-3®) in Cambridge, MA. 

    Jayaraman is a recipient of the 1989 Presidential Young Investigator Award from NSF for his research in the area of computer aided manufacturing and enterprise architecture. In September 1994, he was elected a Fellow of the Textile Institute, (UK). His publications include a textbook on computer-aided problem solving published by McGraw-Hill in 1991, ten U.S. patents, and numerous refereed journal papers, and book chapters. As Principal Investigator, he has received nearly $16Million in research funding from a variety of sources including NSF, DARPA, DoD, NIST, CDC, and industry. Dr. Jayaraman served as Technical Editor, Information Technology, for ATI Magazine (now Textile World) from 1995-2003. From May 2000 to October 2004, he was an Editor of the Journal of the Textile Institute and is currently on the Editorial Advisory Board.

    Jayaraman is a founding member of the IOM Standing Committee on Personal Protective Equipment in the Workplace (2005-2013). From December 2008 to February 2011, he served on the Board on Manufacturing and Engineering Design of the National Academies. In February 2011, he became a founding member of the National Materials and Manufacturing Board of the National Academies. He has also served on nine Study Committees for the National Academy of Medicine (formerly Institute of Medicine) and the National Research Council of the National Academies. He is also a founding member of the IEEE Technical Committee on Biomedical Wearable Systems (2004 –2008). In October 2000, Jayaraman received the Georgia Technology Research Leader Award from the State of Georgia. He received The 2018 Textile Institute Research Publication Award for the most outstanding paper published in 2018 in the Journal of the Textile Institute. In December 2019, he received the Inaugural Distinguished Alumni Award from A.C. College of Technology, Chennai, India.

    sundaresan.jayaraman@mse.gatech.edu

    404.894.2461

    Office Location:
    MRDC 4411

    MSE Profile Page

  • Kolon Center for Lifestyle Innovation
  • Google Scholar

    Research Focus Areas:
    • Flexible Electronics
    • Materials and Nanotechnology
    • Miniaturization & Integration
    • Nanomaterials
    Additional Research:
    Biomedical Devices; wearable devices; smart textiles; Innovation; Industrial Engineering

    IRI Connections:

    Mijin Kim

    Mijin Kim

    Mijin Kim

    Assistant Professor, School of Chemistry and Biochemistry

    Mijin Kim is an assistant professor in the School of Chemistry and Biochemistry at Georgia Tech. Her research program is focused on the development and implementation of novel nanosensor technology to improve cancer research and diagnosis. The Kim Lab combines nanoscale engineering, fluorescence spectroscopy, machine learning approaches, and biochemical tools (1) to understand the exciton photophysics in low-dimensional nanomaterials, (2) to develop diagnostic/nano-omics sensor technology for early disease detection, and (3) to investigate biological processes with focusing problems in lysosome biology and autophagy. For her scientific innovation, Kim has received multiple recognitions, including being named as one of the STAT Wunderkinds and the MIT Technology Review Innovators Under 35 List.

    mkim445@gatech.edu

  • https://chemistry.gatech.edu/people/mijin-kim
  • Google Scholar

    Research Focus Areas:
    • Advanced Materials
    • Bioengineering
    • Biomaterials
    • Biotechnology
    • Cancer Biology
    • Diagnostics
    • Machine Learning
    • Materials and Nanotechnology
    • Nanomaterials
    • Optics & Photonics

    IRI Connections:

    Sabetta Matsumoto

    Sabetta Matsumoto

    Sabetta Matsumoto

    Associate Professor

    Sabetta Matsumoto received her B.A., M.S. and Ph.D. from the University of Pennsylvania. She was a postdoctoral fellow at the Princeton Center for Theoretical Sciences and in the Applied Mathematics group and Harvard University. She is a professor in the School of Physics at the Georgia Institute of Technology. She uses differential geometry, knot theory, and geometric topology to understand the geometry of materials and their mechanical properties. She is passionate about using textiles, 3D printing, and virtual reality to teach geometry and topology to the public.

    sabetta@gatech.edu

    Matsumoto Lab

    University, College, and School/Department
    Research Focus Areas:
    • Additive manufacturing
    • Sustainable Manufacturing

    IRI Connections:

    Aditya Kumar

    Aditya Kumar

    Aditya Kumar

    Assistant Professor

    Dr. Aditya Kumar is an Assistant Professor in the School of Civil and Environmental Engineering at the Georgia Institute of Technology. Previously, he was a Postdoctoral Researcher in Aerospace Engineering at the University of Illinois at Urbana-Champaign. He received his bachelor’s degree from the Indian Institute of Technology, Delhi, and his doctorate from Illinois.

    Dr. Kumar’s main area of research is mechanics and physics of soft materials. Specifically, his research group develops mathematical theories and their computational implementation to study fundamental problems in materials like elastomers, adhesives, and biological tissues. Recent work includes the development of a fracture theory for elastomers that has been able to explain experimental observations that had puzzled scientists for decades. This work has also provided a unifying perspective on fracture in all brittle solids, soft or hard, and has led to an ongoing search for a complete theory of nucleation and propagation of fracture for all solids. Currently, his group is also working on the nonlinear mechanics of material evolution (remodeling) in biological tissues and the multi-physics modeling of 3D printing in polymers. 
     

     

    aditya.kumar@ce.gatech.edu

    404.385.3996

    Office Location:
    Mason 5139B

    Personal Site

    Research Focus Areas:
    • Additive manufacturing
    • Biomaterials
    • Materials & Manufacturing
    • Molecular, Cellular and Tissue Biomechanics

    IRI Connections:

    Vida Jamali

    Vida Jamali

    Vida Jamali

    Assistant Professor, School of Chemical and Biomolecular Engineering

    Vida Jamali earned her Ph.D. in chemical and biomolecular engineering from Rice University under the guidance of Professor Matteo Pasquali and her B.S. in chemical engineering from Sharif University of Technology. Jamali was a postdoctoral researcher in Professor Paul Alivisato's lab at UC Berkeley and Kavli Energy Nanoscience Institute before joining Georgia Tech. The Jamali Research Group uses experimental, theoretical, and computational tools such as liquid phase transmission electron microscopy, rheology, statistical and colloidal thermodynamics, and machine learning to study the underlying physical principles that govern the dynamics, statistics, mechanics, and self-organization of nanostructured soft materials, in and out of thermal equilibrium, from both fundamental and technological aspects.

    vida@gatech.edu

    404.894.5134

    Office Location:
    ES&T 1222

    Jamali Lab

  • ChBE Profile Page
  • Research Focus Areas:
    • Machine Learning
    • Materials and Nanotechnology
    • Nanomaterials
    Additional Research:

    Studying dynamics and self-assembly of nanoparticles and macromolecules in heterogeneous chemical and biological environmentsInvestigating individual to collective behavior of active nanomachinesHarnessing the power of machine learning to understand physical rules governing nanostructured-soft materials, design autonomous microscopy experimentation for inverse material design, and develop new statistical and thermodynamic models for multiscale phenomena


    IRI Connections:

    Alex Abramson

    Alex Abramson

    Alex Abramson

    Assistant Professor, School of Chemical and Biomolecular Engineering

    Alex Abramson is an assistant professor in the School of Chemical and Biomolecular Engineering at Georgia Tech. His research, which focuses on drug delivery and bioelectronic therapeutics, has been featured in news outlets such as The New York Times, NPR, and Wired. Abramson has received several recognitions for scientific innovation, including being named a member of the Forbes 30 Under 30 Science List and the MIT Technology Review Innovators Under 35 List. He is passionate about translating scientific endeavors from bench to bedside. Large pharmaceutical companies have exclusively licensed a portfolio of his patents to bring into clinical trials, and Abramson serves as a scientific advisor overseeing their commercialization. In addition to his scientific endeavors, Abramson plays an active role in his community by leading diversity and inclusion efforts on campus and volunteering as a STEM tutor to local students.

    Abramson received a B.S. in chemical and biomolecular engineering from Johns Hopkins University and a Ph.D. in chemical engineering from MIT as an NSF Graduate Research Fellow under the direction of Professors Robert Langer and Giovanni Traverso. He conducted postdoctoral work at Stanford University as an NIH fellow with Professors Zhenan Bao and the late Sanjiv S. Gambhir.

    The Abramson Lab develops ingestible, implantable, and wearable robotic therapeutic devices that solve key healthcare problems and provide measurable therapeutic outcomes. Our translationally focused research spans a multitude of areas, including (1) drug delivery devices for optimal drug adherence, (2) soft materials for bioelectronic sensors and therapeutics, and (3) preclinical drug screening technologies.

    aabramson6@gatech.edu

    Office Location:
    MoSE 4120B

    Abramson Lab

  • ChBE Profile Page
  • Google Scholar

    Research Focus Areas:
    • Drug Design, Development and Delivery
    • Flexible Electronics
    • Soft Robotics
    Additional Research:

    Biosensors


    IRI Connections:

    C.P. Wong

    C.P. Wong

    C.P. Wong

    Regents' Professor, School of Materials Science and Engineering
    Smithgall Institute Endowed Chair

    Professor C. P. Wong is the Charles Smithgall Institute Endowed Chair and Regents’ Professor. After his doctoral study, he was awarded a two-year postdoctoral fellowship with Nobel Laureate Professor Henry Taube at Stanford University. Prior to joining Georgia Tech, he was with AT&T Bell Laboratories for many years and became an AT&T Bell Laboratories Fellow in 1992. 

    His research interests lie in the fields of polymeric materials, electronic packaging and interconnect, interfacial adhesions, nano-functional material syntheses and characterizations. nano-composites such as well-aligned carbon nanotubes, grahenes, lead-free alloys, flip chip underfill, ultra high k capacitor composites and novel lotus effect coating materials. 

    He received many awards, among those, the AT&T Bell Labs Fellow Award in 1992, the IEEE CPMT Society Outstanding Sustained Technical Contributions Award in 1995, the Georgia Tech Sigma Xi Faculty Best Research Paper Award in 1999, Best MS, PhD and undergraduate Thesis Awards in 2002 and 2004, respectively, the University Press (London) Award of Excellence, the IEEE Third Millennium Medal in 2000, the IEEE EAB Education Award in 2001, the IEEE CPMT Society Exceptional Technical Contributions Award in 2002, the Georgia Tech Class of 1934 Distinguished Professor Award in 2004, Outstanding Ph.D. Thesis Advisor Award in 2005, the IEEE Components, Packaging and Manufacturing Technology Field Award in 2006, the Sigma Xi’s Monie Ferst Award in 2007, the Society of Manufacturing Engineers (SME)’s TEEM Award in 2008, the 2009 IEEE -CPMT David Feldman Outstanding Contribution Award and the 2009 Penn State University Distinguished Alumni Award. The 2012 International Dresden Barkhausen Award (Germany). 

    He holds over 65 U.S. patents, numerous international patents, has published over 1000 technical papers, 12 books and a member of the National Academy of Engineering of the USA since 2000.

    cp.wong@mse.gatech.edu

    404-894-8391

    Office Location:
    Love 367

    Website

  • School of Materials Science and Engineering
  • Research Focus Areas:
    • Materials and Nanotechnology
    • Materials for Energy
    • Solar

    IRI Connections: