Johnna Temenoff

Johnna Temenoff

Johnna Temenoff

Carol Ann and David D. Flanagan Professorship II
Director, NSF Engineering Research Center for CMaT
Marcus Center for Therapeutic Cell Characterization and Manufacturing (MC3M)

Dr. Johnna S. Temenoff is the Carol Ann and David D. Flanagan Professor at the Coulter Department of Biomedical Engineering at Georgia Tech/Emory University. She is also currently the Director of the NSF Engineering Research Center in Cell Manufacturing Technologies (CMaT) and the Director of the Marcus Center for Therapeutic Cell Characterization and Manufacturing (MC3M). Scientifically, Dr. Temenoff is interested in scaling culture of therapeutic cells and tailoring the molecular interactions between glycosaminoglycans and proteins/cells for use in regenerative medicine applications.  Her laboratory focuses primarily on promoting repair after injuries to the tissues of the shoulder, including cartilage, tendon, and muscle.

Dr. Temenoff has been honored with several prestigious awards, such as the NSF CAREER Award, Arthritis Foundation Investigator Award, and Society for Biomaterials (SFB) Clemson Award for Contributions to the Literature, and was named to the College of Fellows of the American Institute for Medical and Biological Engineers (AIMBE), as a Fellow of the Biomedical Engineering Society (BMES), as a Fellow of the International Academy of Medical and Biological Engineering (IAMBE) and as a Fellow of Biomaterials Science and Engineering, International Union of Societies for Biomaterials Science and Engineering (IUSBSE).  She has co-authored a highly successful introductory textbook - Biomaterials: The Intersection of Biology and Materials Science, by J.S. Temenoff and A.G. Mikos (now in a 2nd edition), for which Dr. Temenoff and Dr. Mikos were awarded the American Society for Engineering Education’s Meriam/Wiley Distinguished Author Award for best new engineering textbook. 

johnna.temenoff@bme.gatech.edu

404-385-5026

Office Location:
Petit 2305

Website

  • Coulter Department of Biomedical Engineering
  • NSF Engineering Research Center for Cell Manufacturing Technologies (CMaT)
  • Google Scholar

    Research Focus Areas:
    • Biomaterials
    • Chemical Biology
    • Drug Design, Development and Delivery
    • Regenerative Medicine

    IRI Connections:

    Shuichi Takayama

    Shuichi Takayama

    Shuichi Takayama

    Professor, Wallace H. Coulter Department of Biomedical Engineering
    GRA Eminent Scholar, Wallace H. Coulter Department of Biomedical Engineering
    Price Gilbert, Jr. Chair in Regenerative Engineering andMedicine

    Shu Takayama earned his BS and MS in Agricultural Chemistry at the University of Tokyo. He earned a Ph.D. in Chemistry at The Scripps Research Institute in La Jolla, California studying bio-organic synthesis with Dr. Chi‐Huey Wong. He then worked as a postdoc with Dr. George Whitesides at Harvard University where he focused on applying microfluidics to studying cell and molecular biology.

    Takayama began his career at the University of Michigan, where led his lab in the Department of Biomedical Engineering and Macromolecular Science & Engineering for over 17 years. In 2017, the lab moved to Georgia Tech where Shu became the Georgia Research Alliance Price Gilbert Chair Professor of Biomedical Engineering in the Wallace H. Coulter Department of Biomedical Engineering.

    Takayama’s research interests are diverse and motivated by clinical and biotechnology needs. He is always interested in hearing from stakeholders in these areas who are seeking engineering collaboration.

    takayama@gatech.edu

    404.385.5722

    Office Location:
    EBB 4018

    Takayama lab

  • BME Profile Page
  • Google Scholar

    Research Focus Areas:
    • Bioengineering
    • Biomaterials
    • Cancer Biology
    • Cell Manufacturing
    • Medical Device Design, Development and Delivery
    • Micro and Nano Device Engineering
    • Miniaturization & Integration
    • Molecular, Cellular and Tissue Biomechanics
    • Nanomaterials
    • Systems Biology
    Additional Research:
    Use of micro/nanofluidics for cell analysis; diagnostics; and chromatin analysis; High throughput 3D cell cultures; Organs-on-a-chip construction and design; Role of rhythm in cell signaling; Self-switching fluidic circuits; Fracture fabrication

    IRI Connections:

    Gabe Kwong

    Gabe Kwong

    Gabe Kwong

    Associate Professor
    Director, Laboratory for Synthetic Immunity

    Dr. Gabe Kwong is an Assistant Professor in the Wallace H. Coulter Department of Biomedical Engineering at the Georgia Tech School of Engineering and Emory School of Medicine. His research program is conducted at the interface of the life sciences, medicine and engineering where a central focus is understanding how to harness the sophisticated defense mechanisms of immune cells to eradicate disease and provide protective immunity. Kwong has pioneered numerous biomedical technologies and published in leading scientific journals such as Nature Biotechnology and Nature Medicine. His work has been profiled broadly including coverage in The Economist, NPR, BBC, and WGBH-2, Boston 's PBS station. Professor Kwong earned his B.S. in Bioengineering with Highest Honors from the University of California, Berkeley and his Ph.D. in Bioengineering from California Institute of Technology with Professor James R. Heath. He conducted postdoctoral studies at Massachusetts Institute of Technology with Professor Sangeeta N. Bhatia. For his work, Dr. Kwong has been awarded the NIH Ruth L. Kirschstein National Research Service Award, named a "Future Leader in Cancer Research and Translational Medicine" by the Massachusetts General Hospital, and awarded the Burroughs Wellcome Fund Career Award at the Scientific Interface, a distinction given to the 10 most innovative bioengineers in the nation. Dr. Kwong holds seven issued or pending patents in cancer nanotechnology.

    gkwong@gatech.edu

    404-385-3746

    Office Location:
    Marcus Nanotechnology 3132

    Website

  • Related Site
  • Google Scholar

    Research Focus Areas:
    • Biomaterials
    • Cancer Biology
    • Cell Manufacturing
    • Chemical Biology
    • Drug Design, Development and Delivery
    • Miniaturization & Integration
    • Nanomaterials
    • Systems Biology
    Additional Research:
    Human health has been transformed by our collective capacity to engineer immunity — from the pivotal development of the smallpox vaccine to the curative potential of recent cancer immunotherapies. These examples motivate our research program that is conducted at the interface of Engineering and Immunology, and where we develop biomedical technologies and applications that shape a diverse array of immunological systems.The questions that are central to our exploration include: How do we begin to study an individual's repertoire of well over one billion immune cells when current technologies only allow us to study a handful of cells at a time? What are the biomarkers of immunological health as the body responds to disease and ageing, and how may these indicators trigger clinical decisions? And how can we genetically rewire immune cells to provide them with entirely new functions to better fight complex diseases such as cancer?To aid in our studies, we use high-throughput technologies such as next-generation sequencing and quantitative mass spectrometry, and pioneer the development of micro- and nanotechnologies in order to achieve our goals. We focus on clinical problems in cancer, infectious diseases and autoimmunity, and ultimately strive to translate key findings into therapies for patients.

    IRI Connections:

    A. Fatih Sarioglu

    A. Fatih Sarioglu

    A. Fatih Sarioglu

    Associate Professor, School of Electrical and Computer Engineering

    A. Fatih Sarioglu received the B.Sc. degree from Bilkent University, Ankara, Turkey in 2003, and the M.S. and Ph.D. degrees from Stanford University in 2005 and 2010, respectively, all in Electrical Engineering.

    Sarioglu worked as a postdoctoral research associate at the Center for Nanoscale Science and Engineering at Stanford University from 2010 to 2012. From 2012-2014, he was a research fellow at the Center for Engineering in Medicine, Massachusetts General Hospital and Harvard Medical School. In October 2014, he joined the School of Electrical and Computer Engineering at the Georgia Institute of Technology as an assistant professor.

    Sarioglu's research interests are at the interface of nano-/micro-engineering and biomedicine. He is particularly interested in developing N/MEMS-based technologies for biomedical applications.

    sarioglu@gatech.edu

    404.894.5032

    Office Location:
    Pettit/MiRC 217

    Biomedical Microsystems Lab

  • ECE Profile Page
  • Google Scholar

    Research Focus Areas:
    • Bioengineering
    • Cancer Biology
    • Drug Design, Development and Delivery
    • Medical Device Design, Development and Delivery
    • Micro and Nano Device Engineering
    • Miniaturization & Integration
    • Systems Biology
    Additional Research:
    Nano- and Micro-systems for bio-molecular sensing and imagingMicrofluidic devices for cell sorting and disease detectionHigh-throughput bio-analytical instrumentation for cellular and molecular characterizationIntegrated platforms for point-of care diagnosticsImplantable medical devices for minimally-invasive health monitoring

    IRI Connections:

    Arijit Raychowdhury

    Arijit Raychowdhury

    Arijit Raychowdhury

    Chair, School of Electrical and Computer Engineering
    ON Semiconductor Professor, School of Electrical and Computer Engineering

    Arijit Raychowdhury is currently an Professor in the School of Electrical and Computer Engineering at the Georgia Institute of Technology where he joined in January, 2013. He received his Ph.D. degree in Electrical and Computer Engineering from Purdue University (2007) and his B.E. in Electrical and Telecommunication Engineering from Jadavpur University, India (2001). His industry experience includes five years as a Staff Scientist in the Circuits Research Lab, Intel Corporation, and a year as an Analog Circuit Designer with Texas Instruments Inc. His research interests include low power digital and mixed-signal circuit design, design of power converters, sensors and exploring interactions of circuits with device technologies. Raychowdhury holds more than 25 U.S. and international patents and has published over 80 articles in journals and refereed conferences. He serves on the Technical Program Committees of DAC, ICCAD, VLSI Conference, and ISQED and has been a guest associate-editor for JETC. He has also taught many short courses and invited tutorials at multiple conferences, workshops and universities. He is the winner of the Intel Labs Technical Contribution Award, 2011; Dimitris N. Chorafas Award for outstanding doctoral research, 2007; the Best Thesis Award, College of Engineering, Purdue University, 2007; Best Paper Awards at the International Symposium on Low Power Electronic Design (ISLPED) 2012, 2006; IEEE Nanotechnology Conference, 2003; SRC Technical Excellence Award, 2005; Intel Foundation Fellowship, 2006; NASA INAC Fellowship, 2004; M.P. Birla Smarak Kosh (SOUTH POINT) Award for Higher Studies, 2002; and the Meissner Fellowship 2002. Raychowdhury is a Senior Member of the IEEE

    arijit.raychowdhury@ece.gatech.edu

    404.894.1789

    Office Location:
    Klaus 2362

    ECE Profile Page

  • Integrated Circuits & Systems Research Lab
  • Google Scholar

    Research Focus Areas:
    • Computer Engineering
    • Micro and Nano Device Engineering
    • Miniaturization & Integration
    • Mobile & Wireless Communications
    • Optics & Photonics
    • Semiconductors
    Additional Research:
    Design of low power digital circuits with emphasis on adaptability and resiliencyDesign of voltage regulators, adaptive clocking, and power managementDevice-circuit interactions for logic and storageAlternative compute architectures

    IRI Connections:

    Nian Liu

    Nian Liu

    Nian Liu

    Assistant Professor

    Nian Liu began as an Assistant Professor at Georgia Institute of Technology, School of Chemical and Biomolecular Engineering in January 2017. He received his B.S. in 2009 from Fudan University (China), and Ph.D. in 2014 from Stanford University, where he worked with Prof. Yi Cui on the structure design for Si anodes for high-energy Li-ion batteries. In 2014-2016, he worked with Prof. Steven Chu at Stanford University as a postdoc, where he developed in situ optical microscopy to probe beam-sensitive battery reactions. Dr. Liu 's lab at Georgia Tech is broadly interested in the combination of nanomaterials, electrochemistry, and light microscopy for understanding and addressing the global energy challenges. Dr. Liu is the recipient of the Electrochemical Society (ECS) Daniel Cubicciotti Award (2014) and American Chemical Society (ACS) Division of Inorganic Chemistry Young Investigator Award (2015).

    nliu82@mail.gatech.edu

    404-894-5103

    Office Location:
    ES&T 1230

    Website

  • Related Site
  • Google Scholar

    Research Focus Areas:
    • Biomaterials
    • Hydrogen Production
    • Miniaturization & Integration
    • Nanomaterials
    • Optics & Photonics
    • Semiconductors
    Additional Research:
    Electronic Systems; Packaging and Components; Nanostructures & Materials; Optoelectronics Photonics & Phononics; Semiconductors; Materials & Processes

    IRI Connections:

    F. Levent Degertekin

    F. Levent Degertekin

    F. Levent Degertekin

    Professor
    George W. Woodruff Chair in Mechanical Systems

    Dr. F. Levent Degertekin received his B.S. degree in 1989 from M.E.T.U, Turkey; M.S. degree in 1991 from Bilkent University, Turkey; and his Ph.D. in 1997 from Stanford University, California, all in electrical engineering. His M.S. thesis was on acoustic microscopy, and his Ph.D. work was on ultrasonic sensors for semiconductor processing, and wave propagation in layered media. He worked as an engineering research associate at the Ginzton Laboratory at Stanford University from 1997 until joining the George W. Woodruff School of Mechanical Engineering at Georgia Tech in spring 2000. 

    He has published over 150 papers in international journals and conference proceedings. He holds 20 U.S. patents, and received an NSF CAREER Award for his work on atomic force microscopy in 2004. Dr. Degertekin served on the editorial board of the IEEE Sensors Journal, and on the technical program committees of several international conferences on ultrasonics, sensors, and micro-opto-mechanical systems (MOEMS).

    levent.degertekin@me.gatech.edu

    404-385-1357

    Office Location:
    Love 311B

  • Related Site
  • Google Scholar

    Research Focus Areas:
    • Micro and Nano Device Engineering
    Additional Research:
    Degertekin's research focuses on understanding of physical phenomena in acoustics and optics, and utilizing this knowledge creatively in the form of microfabricated devices. The research interests span several fields including atomic force microscopy (AFM), micromachined opto-acoustic devices, ultrasound imaging, bioanalytical instrumentation, and optical metrology. Dr. Degertekin's research group, in collaboration with an array of collaborators, has developed innovative devices for applications such as nanoscale material characterization and fast imaging, hearing aid microphones, intravascular imaging arrays for cardiology, bioanalytical mass spectrometry, and microscale parallel interferometers for metrology.

    IRI Connections:

    Karl Jacob

    Karl Jacob

    Karl Jacob

    Professor, School of Materials Science and Engineering and School of Mechanical Engineering

    Karl I. Jacob, a professor of Materials Science and Engineering with a joint appointment in the G. W. Woodruff School of Mechanical Engineering, teaches graduate and undergraduate courses on polymer physics and engineering, rheology, and mechanics of polymeric materials. His graduate work was in the area of numerical analysis of vibrating three-dimensional structures. He came to Georgia Tech from DuPont Corporation in 1995. His initial work at the DuPont Dacron Research Laboratory was in the area of fiber-reinforced composite materials and in the development and modeling of fiber spinning processes. He then moved to the DuPont Central Research and Development Department, where he was involved in molecular modeling, computational chemistry, and diffusion.

    Jacob is a member of the American Academy of Mechanics, the American Society of Mechanical Engineers, the Sigma Xi Research Society, and the Phi Kappa Phi Honor Society.

    karl.jacob@mse.gatech.edu

    404.894.2541

    Office Location:
    MRDC-1 4509

  • MSE Profile Page
  • University, College, and School/Department
    Research Focus Areas:
    • Biobased Materials
    • Biochemicals
    • Biorefining
    • Biotechnology
    • Computational Materials Science
    • Drug Design, Development and Delivery
    • Fuels & Chemical Processing
    • Molecular, Cellular and Tissue Biomechanics
    • Pulp Paper Packaging & Tissue
    • Sustainable Manufacturing
    Additional Research:
    "Dr. Jacob's research is directed at stress induced phase changes, nanoscale characterization of materials, synthesis of polymeric nanofibers, mechanical behavior of fiber assemblies (particularly related to biological systems and biomimitic systems), nanoparticle reinforced composites, transdermal drug delivery systems, large scale deformation of rubbery (networked) polymers, and nanoscale fracture of materials. The objectives in this work, using theoretical, computational and experimental techniques, is to understand the effect of micro- and nano- structures in the behavior of materials in order to try to design the micro/nano structures for specific materials response. Dr. Jacob plans are to continue current research interests with a multidisciplinary thrust with more emphasis in bio related areas and to start some work on the dynamic behavior of materials and structures. Graduate students could benefit from the interdisciplinary nature of the work combining classical continuum mechanics with nanoscale analysis for various applications, particularly in the nano and bio areas. Dr. Jacob has extensive experience in vibrations and stability of structures, mechanics of polymeric materials, behavior of fiber assemblies, stress-induced phase transformation, diffusion, and molecular modeling. His research involves the application of mechanics principles, both theoretical and experimental, in the analysis and design of materials for various applications.";Fibers; smart textiles; fuel cells; Polymeric composites

    IRI Connections:

    Craig Zimring

    Craig Zimring

    Craig Zimring

    Professor, School of Architecture
    Director, SimTigrate Design Lab

    An environmental psychologist and professor of architecture, Craig Zimring directs the SimTigrate Design Lab. He and his colleagues and students focus on how innovative, research-informed design can improve health and healthcare, and how research can be incorporated into classroom teaching, both to improve design and help students develop skills for practice. He has conducted over $7M in research with and for Mayo Clinic, Emory Healthcare, Children’s Healthcare of Atlanta, Military Health System, HKS Architects, HDR Architects, and many others, including safety-net clinics and international providers of healthcare. He has published over 100 scholarly and professional publications and received 11 awards for his research. He has given numerous keynote and plenary addresses to organizations and meetings such as Australian Healthcare Week, Institute for Patient and Family-Centered Care, and Chinese Hospital Association. His Ph.D. and master's graduates serve in teaching and leadership positions in universities and practice.

    He currently serves on the board of the Center for Health Design and has served on the boards of the Environmental Design Research Association, the National Academies’ Board on Infrastructure and the Constructed Environment, the Joint Commission’s Roundtable on the Hospital of the Future and other organizations. In addition to his work on healthcare, Zimring served as a senior scientist in developing the 2010 New York City Active Design Guidelines and was a founding member of the Center for Active Design.

    craig.zimring@design.gatech.edu

    404.894.3915

    Office Location:
    247 4th Street, #265

    Architecture Profile Page

  • SimTigrate Design Lab
  • Google Scholar

    University, College, and School/Department
    Research Focus Areas:
    • Lifelong Health and Well-Being
    • Smart Cities and Inclusive Innovation
    Additional Research:

    Active LivingEnvironmental PsychologyEvidence-Based DesignHealthcare Safety & EffectivenessPatient-Centered Care


    IRI Connections:

    Martha Grover

    Martha Grover

    Martha Grover

    Professor, School of Chemical and Biomolecular Engineering
    Associate Chair for Graduate Studies, School of Chemical and Biomolecular Engineering
    James Harris Faculty Fellow, School of Chemical and Biomolecular Engineering
    Member, NSF/NASA Center for Chemical Evolution

    Grover’s research activities in process systems engineering focus on understanding macromolecular organization and the emergence of biological function. Discrete atoms and molecules interact to form macromolecules and even larger mesoscale assemblies, ultimately yielding macroscopic structures and properties. A quantitative relationship between the nanoscale discrete interactions and the macroscale properties is required to design, optimize, and control such systems; yet in many applications, predictive models do not exist or are computationally intractable.

    The Grover group is dedicated to the development of tractable and practical approaches for the engineering of macroscale behavior via explicit consideration of molecular and atomic scale interactions. We focus on applications involving the kinetics of self-assembly, specifically those in which methods from non-equilibrium statistical mechanics do not provide closed form solutions. General approaches employed include stochastic modeling, model reduction, machine learning, experimental design, robust parameter design, and estimation.

    martha.grover@chbe.gatech.edu

    404.894.2878

    Office Location:
    ES&T 1228

    Grover Group

  • ChBE Profile Page
  • Google Scholar

    Research Focus Areas:
    • Electronic Materials
    • Molecular Evolution
    • Nuclear
    Additional Research:
    Colloids; Crystallization; Organic and Inorganic Photonics and Electronics; Polymers; Discrete atoms and molecules interact to form macromolecules and even larger mesoscale assemblies, ultIMaTely yielding macroscopic structures and properties. A quantitative relationship between the nanoscale discrete interactions and the macroscale properties is required to design, optimize, and control such systems; yet in many applications, predictive models do not exist or are computationally intractable. The Grover group is dedicated to the development of tractable and practical approaches for the engineering of macroscale behavior via explicit consideration of molecular and atomic scale interactions. We focus on applications involving the kinetics of self-assembly, specific those in which methods from non-equilibrium statistical mechanics do not provide closed form solutions. General approaches employed include stochastic modeling, model reduction, machine learning, experimental design, robust parameter design, estIMaTion, and optimal control, monitoring and control for nuclear waste processing and polymer organic electronics

    IRI Connections: