Victor Breedveld

Victor Breedveld
victor.breedveld@chbe.gatech.edu
ChBE Profile
Associate Chair for Undergraduate Studies
Professor and Frank Dennis Faculty Fellow, School of Chemical and Biomolecular Engineering
Phone
404.894.5134
Office
Ford Environmental Science & Technology Building, Room 1222
Additional Research

Biofuels; Papermaking, Coatings & Barriers; Films & Coatings; Biomaterials; Structure and Reheology of Complex fluids; Rheology of Bioengineering Materials

Google Scholar
https://scholar.google.com/citations?hl=en&user=sHnj_QYAAAAJ&view_op=list_works&sortby=pubdate
Website
Victor
Breedveld
Show Regular Profile

Fani Boukouvala

Fani Boukouvala
fani.boukouvala@chbe.gatech.edu
ChBE Bio Page

Dr. Boukouvala is originally from Piraeus, which is the port of Athens in Greece. As the daughter of an airforce pilot, she travelled a lot with her family. Her first international move was actually to the USA, where she spent one year in Montgomery, Alabama. She later on lived in Riyadh, Saudi Arabia and Crete, Greece, before returning to Athens to get her B.S Degree in Chemical Engineering from the National Technical University in Athens. In 2008, she moved back to the US to obtain a PhD in Chemical Engineering at Rutgers University in NJ. She then worked as a Postdoctoral Associate in both Princeton University and Texas A&M University. In August 2016, Dr. Boukouvala returned to the South East US, as an Assistant Professor in the School of Chemical & Biomolecular Engineering at Georgia Tech. 

Her research interest in Process Systems Engineering (PSE) started during her PhD years, where she worked under the supervision of Dr. Marianthi Ierapetritou, on modeling and optimization of continuous pharmaceutical manufacturing. Her background on optimization and data-driven modeling was enhanced during her years as a postdoc with the late Christodoulos A. Floudas. Dr. Boukouvala is a proud 4th generation member of the academic family tree of the father of PSE, Roger Sargent.

Associate Professor, School of Chemical and Biomolecular Engineering
Phone
(404) 385-5371
Additional Research

System Design & Optimization; Energy; Sustainability

Google Scholar
https://scholar.google.com/citations?hl=en&user=tyO6KxAAAAAJ&view_op=list_works&sortby=pubdate
Linked In Profile
Fani
Boukouvala
Show Regular Profile

Faisal Alamgir

Faisal Alamgir
faisal.alamgir@mse.gatech.edu
Website
Professor, School of Materials Science and Engineering
Initiative Lead, Advanced Real-time Materials Characterization
Phone
404.385.3263
Office
Love 373
Additional Research

Energy Conversion, energy storage, nanomaterials, optical materials, photovoltaics, catalysis, electrical grid, energy storage

Google Scholar
https://scholar.google.com/citations?hl=en&user=CT721oIAAAAJ&view_op=list_works&sortby=pubdate
Faisal
Alamgir
Show Regular Profile

Cyrus Aidun

Cyrus Aidun
cyrus.aidun@me.gatech.edu
Website

Dr. Aidun joined the Woodruff School as a Professor in 2003 after completion of a two-year period as program director at the National Science Foundation. He began at Tech in 1988 as an Assistant Professor at the Institute of Paper Science and Technology. Prior, he was a research Scientist at Battelle Research Laboratories, Postdoctoral Associate at Cornell University and Senior Research Consultant at the National Science Foundation's Supercomputer Center at Cornell. 

Dr. Aidun's research is at the intersection between fundamentals of the physics of complex fluids/thermal transport and applications to engineering and biotransport. He has a diverse research portfolio in fluid mechanics, bioengineering, renewable bioproducts and decarbonization of industrial processes. 

A major focus has been to understand the physics of blood cell transport and interaction with glycoproteins (e.g., vWF) with applications to cardiovascular diseases.

Professor, Woodruff School of Mechanical Engineering
Phone
404-894-6645
Office
Love Building, Room 320
Additional Research

Computational analysis of cellular blood flow in the cardiovascular system with applications to platelet margination, thrombus formation, and platelet activation in artificial heart valves. Thermal Systems. Chemical Recovery; Papermaking.

Google Scholar
https://scholar.google.com/citations?user=ksg38AgAAAAJ&hl=en&oi=sra
Related Site
Cyrus
Aidun
K.
Show Regular Profile

Blair Brettmann

Blair Brettmann
blair.brettmann@mse.gatech.edu
Website

Blair Brettmann received her B.S. in chemical engineering at the University of Texas at Austin in 2007. She received her Master’s in chemical engineering practice from MIT in 2009 following internships at GlaxoSmithKline (Upper Merion, PA) and Mawana Sugar Works (Mawana, India). Blair received her Ph.D. in chemical engineering at MIT in 2012 working with the Novartis-MIT Center for Continuous Manufacturing under Professor Bernhardt Trout. Her research focused on solid-state characterization and application of pharmaceutical formulations prepared by electrospinning. Following her Ph.D., Brettmann worked as a research engineer for Saint-Gobain Ceramics and Plastics for two years. While at Saint-Gobain she worked on polymer-based wet coatings and dispersions for various applications, including window films, glass fiber mats and architectural fabrics. Later, Brettmann served as a postdoctoral researcher in the Institute for Molecular Engineering at the University of Chicago with Professor Matthew Tirrell. Currently, Brettmann is an assistant professor with joint appointments in chemical and biomolecular engineering and Materials Science and Engineering at Georgia Tech.

Assistant Professor, School of Chemical and Biomolecular Engineering and Material Science and Engineering
Phone
404.894.2535
Office
MoSE 31100P
Additional Research

Pharmaceuticals, polymer and fiber, printing technologies, polymers, nanocellulose applications, new materials, wet-end chemistry, manufacturing, biotechnology, cellulosic nanomaterials, chemistry, biomaterials, aerogels and hydrogels, coating, coatings and barriers, films and coatings

Google Scholar
https://scholar.google.com/citations?user=2CXgPLkAAAAJ&hl=en
Related Site
Blair
Brettmann
K.
Show Regular Profile

Andreas Bommarius

Andreas Bommarius
andreas.bommarius@chbe.gatech.edu
Website

Andreas (Andy) S. Bommarius is a professor of Chemical and Biomolecular Engineering as well of Chemistry and Biochemistry at the Georgia Institute of Technology in Atlanta, GA.  He received his diploma in Chemistry in 1984 at the Technical University of Munich, Germany and his Chemical Engineering B.S. and Ph.D. degrees in 1982 and 1989 at MIT, Cambridge, MA.

From 1990-2000, he led the Laboratory of Enzyme Catalysis at Degussa (now Evonik) in Wolfgang, Germany, where his work ranged from immobilizing homogenous catalysts in membrane reactors to large-scale cofactor-regenerated redox reactions to pharma intermediates.

At Georgia Tech since 2000, his research interests cover green chemistry and biomolecular engineering, specifically biocatalyst development and protein stability studies.  His lab applies data-driven protein engineering to improve protein properties on catalysts ranging from ene and nitro reductases to cellobiohydrolases.  Bommarius has guided the repositioning of the curriculum towards Chemical and Biomolecular Engineering by developing new courses in Process Design, Biocatalysis and Metabolic Engineering, as well as Drug Design, Development, and Delivery (D4), an interdisciplinary course with Mark Prausnitz.

Andy Bommarius in 2008 became a Fellow of the American Institute of Medical and Biological Engineering.  Since 2010, he is Director of the NSF-I/UCR Center for Pharmaceutical Development (CPD), a Center focusing on process development, drug substance and product stability, and novel analytical methods for the characterization of drug substances and excipients.

Professor, School of Chemical and Biomolecular Engineering, School of Chemistry and Biochemistry
RBI Initiative Lead: A Renewables-based Economy from WOOD (ReWOOD)
Phone
404-385-1334
Office
EBB 5018
Additional Research

Biomolecular engineering, especially biocatalysis, biotransformations, and biocatalyst stability. Biofuels. Enzymatic Processing; Biochemicals; Chip Activation.

Google Scholar
https://scholar.google.com/citations?user=rH4O5RQAAAAJ&hl=en&oi=ao
LinkedIn Related Site
Andreas
Bommarius
Show Regular Profile

Yongsheng Chen

Yongsheng Chen
yongsheng.chen@ce.gatech.edu
Website

Chen has an extensive research interests in environmental science and engineering. More specifically, he is a leading researcher in the environmental applications of nanomaterials and their potential fate, transport, transformation, bioaccumulation and toxicity in the environment. His interests in environmental nanomaterials dated back in his graduate research in 1992. He has also been active on algae based bio-renewable energy and sustainable urban development. Chen has been principle and co-principal investigators for 28 research projects (by June 2010) funded by the National Science Foundation, U.S. Environmental Protection Agency, NASA, Boeing and other organizations. The total funds are $7 million. He has also served as a review member or panel review member in the U.S. National Science Foundation, the U.S. Environmental Protection Agency, the U.S. Department of Energy evaluation committee. He has also been invited to serve as an abroad review expert for the China Changjiang Scholars Program (which is to awarded to the top researchers in China). He has published more than 40 papers and two book chapters in this field.

Chen received his Ph.D in Nankai University, China. He joined the Georgia Tech School of Civil and Environmental Engineering in May 2009.

Bonnie W. and Charles W. Moorman IV Professor, School of Civil and Environmental Engineering
Phone
(404) 894-3089
Office
Daniel Environmental Engineering Laboratory, Room 206
Additional Research

Biofuels; Separations Technology; Water

University, College, and School/Department
Civil Engineering Profile
Yongsheng
Chen
Show Regular Profile

Vinayak Agarwal

Vinayak Agarwal
vagarwal@gatech.edu
Website

Vinny is an Assistant Professor at Georgia Tech with joint appointments at the School of Chemistry and Biochemistry and School of Biological Sciences.

A majority of antibiotics and drugs that we use in the clinic are derived or inspired from small organic molecules called Natural Products that are produced by living organisms such as bacteria and plants. Natural Products are at the forefront of fighting the global epidemic of antibiotic resistant pathogens, and keeping the inventory of clinically applicable pharmaceuticals stocked up. Some Natural Products are also potent human toxins and pollutants, and we need to understand how these toxins are produced to minimize our and the environmental exposure to them.

We as biochemists ask some simple questions- how and why are Natural Products produced in Nature, what we can learn from Natural Product biosynthetic processes, and how we can exploit Nature's synthetic capabilities for interesting applications?

Broadly, we are interested in questions involving (meta)genomics, biochemistry, structural and mechanistic enzymology, mass spectrometry, analytical chemistry, and how natural product chemistry dictates biology.

Assistant Professor
Phone
404-385-3798
Office
Petit Biotechnology Building, Office 3315
Additional Research

A majority of antibiotics and drugs that we use in the clinic are derived or inspired from small organic molecules called Natural Products that are produced by living organisms such as bacteria and plants. Natural Products are at the forefront of fighting the global epidemic of antibiotic resistant pathogens, and keeping the inventory of clinically applicable pharmaceuticals stocked up. Some Natural Products are also potent human toxins and pollutants, and we need to understand how these toxins are produced to minimize our and the environmental exposure to them. We as biochemists ask some simple questions- how and why are Natural Products produced in Nature, what we can learn from Natural Product biosynthetic processes, and how we can exploit Nature's synthetic capabilities for interesting applications? Broadly, we are interested in questions involving (meta)genomics, biochemistry, structural and mechanistic enzymology, mass spectrometry, analytical chemistry, and how natural product chemistry dictates biology.

Related Site
Vinayak
Agarwal
Show Regular Profile

Stefan France

Stefan France
stefan.france@chemistry.gatech.edu
Website

Stefan France is an Associate Professor in the School of Chemistry and Biochemistry. Professor France earned his B.S. in Chemistry (2000) from Duke University and a M.A. (2003) and Ph.D. (2005) in Organic Chemistry from Johns Hopkins University. His research group focuses on experimental methodology development, natural product synthesis, and medicinal chemistry. Owing to Prof. France's avid interest in undergraduate research, his research group has mentored and trained more than 60 undergraduates (both Georgia Tech and non-Georgia Tech students). Professor France has been the recipient of several awards for his research, mentorship, and teaching including: the 2018 Georgia Tech-Georgia Power Professor of Excellence; the 2015 Georgia Tech Senior Faculty Outstanding Undergraduate Mentor Award; the 2014 Georgia Tech Faculty Award for Academic Outreach; the 2014 Georgia Tech Hesberg Teaching Award; the 2013 Georgia Tech Sigma Xi Young Faculty Award; the 2012 National Organization for the Professional Advancement for Black Chemists and Chemical Engineers (NOBCChE) Lloyd N. Ferguson Young Scientist Award; and the 2011 National Science Foundation (NSF) CAREER Award. He heads the Chemistry FAST Program, a NSF Research Experiences for Undergraduates (REU) Site, and also serves as Chair of the NSF Chemistry REU Leadership Group.

Associate Professor
Phone
404-385-1796
Office
MoSE 2100K
Additional Research

Our group is interested in the design of efficient methodologies to accomplish the formation of carbon-carbon and carbon-heteroatom bonds with the intent to apply the methodology toward the synthesis of complex natural and unnatural targets. Natural Product Synthesis. Approaches to natural products not only inspire the development of new synthetic strategies, but often unveil unexpected and often interesting reactivity. Targets are chosen for their interesting biological activity along with their sheer complexity. We are interested in exploring both modular and convergent approaches to complex targets that enable facile derivatization for the development of combinatorial libraries. Medicinal Chemistry. Medicinal or pharmaceutical chemistry lies at the intersection of chemistry and pharmacy. Our group is interested in the design, synthesis and development of pharmaceutical drugs, or other chemical entities suitable for therapeutic use. We are further interested in the study of their biological properties and their quantitative structure-activity relationships (QSAR). Given that medicinal chemistry is a highly interdisciplinary science, we aim to establish several collaborations with biologists, biochemists, and computational chemists to facilitate the design and development process. In particular, we aim to develop therapeutics toward the treatment of various forms of cancer, HIV, diabetes, and neurological disorders, such as Alzheimer's and Parkinson's disease.

Google Scholar
https://scholar.google.com/citations?user=UQE3zMQAAAAJ&hl=en&oi=ao
Related Site
Stefan
France
Show Regular Profile

Andrew Medford

Andrew Medford
andrew.medford@chbe.gatech.edu
Website

Dr. Medford is interested in leveraging materials informatics, statistics, and machine learning to maximize the practical impact of fundamental atomic-scale simulations in the field of surface science and catalysis. His research areas include heterogeneous catalysis, oxide surface chemistry, density functional theory, kinetic models, uncertainty quantification, and Bayesian optimization and inference.

Assistant Professor, School of Chemical and Biomolecular Engineering
Phone
(404) 385-5531
Additional Research

Catalysis, Biochemicals, Biorefining, Chemistry, Sugars, Molecular Simulations, Computational Biology

Andrew
Medford
J.
Show Regular Profile