Marta Hatzell

Marta Hatzell

Marta Hatzell

Interim Deputy Director, SEI
SEI Lead: Industrial Decarbonization and Clean Catalysis
IMS Lead: Catalysis and Separations
Woodruff Professor and Associate Professor, Mechanical Engineering

Marta Hatzell is a professor of mechanical engineering at Georgia Institute of Technology. Prior to starting at Georgia Tech in August of 2015, she was a post-doctoral researcher in the Department of Material Science and Engineering at the University of Illinois - Urbana-Champaign. During her post doc, she worked in the Braun Research Group on research at the interface between colloid science and electrochemistry. She completed her Ph.D. at Penn state University in the Logan Research Group. Her Ph.D. explored environmental technology for energy generation and water treatment. During graduate school she was an NSF and PEO Graduate Research Fellow. 

Currently her research group focuses on exploring the sustainable catalysis and separations, with applications spanning from solar energy conversion to desalination. She is an active member of the American Chemical Society, the Electrochemical Society, ASEEP, and ASME. Hatzell was awarded the NSF Early CAREER award in 2019 for her work on distributed solar-fertilizers, attended the 2019 US Frontiers of Engineering Symposium through the National Academy of Engineering, and was awarded the 2020 Sloan Research Fellowships in Chemistry.

marta.hatzell@me.gatech.edu

(404) 385-4503

Website

Research Focus Areas:
  • Combustion
  • Energy Generation, Storage, and Distribution
  • Hydrogen
  • Hydrogen Equity
  • Hydrogen Production
  • Hydrogen Utilization
Additional Research:

Catalysis; Energy Storage; Smart Infrastructure; Thermal Systems; Water


IRI Connections:

Rudolph Gleason

Rudolph Gleason

Rudolph Gleason

Professor, Mechanical Engineering and Biomedical Engineering
Joint Appointment in the School of Biomedical Engineering

Rudolph (Rudy) L. Gleason began at Tech in Fall 2005 as an assistant professor. Prior, he was a postdoctoral fellow at Texas A&M University. He is currently a professor in the School of Mechanical Engineering and the School of Biomedical Engineering in the College of Engineering. Gleason’s research program has two key and distinct research aims. The first research aim is to quantify the link between biomechanics, mechanobiology, and tissue growth and remodeling in diseases of the vasculature and other soft tissues. The second research aim is to translate engineering innovation to combat global health disparities and foster sustainable development in low-resource settings around the world. Gleason serves as a Georgia Tech Institute for People and Technology initiative lead for research activities related to global health and well-being.

rudy.gleason@me.gatech.edu

404-385-7218

Office Location:
TEP 205

  • Related Site
  • Google Scholar

    Research Focus Areas:
    • Biobased Materials
    • Molecular, Cellular and Tissue Biomechanics
    • Regenerative Medicine
    Additional Research:

    Cardiovascular mechanics, soft tissue growth and remodeling, and tissue engineering


    IRI Connections:

    Julien Meaud

    Julien Meaud

    Julien Meaud

    Associate Professor

    Julien Meaud joined Georgia Tech as an Assistant Professor of Mechanical Engineering in August 2013. Before joining Georgia Tech, he worked as a research fellow in the Vibrations and Acoustics Laboratory and in the Computational Mechanics Laboratory at the University of Michigan, Ann Arbor. 

    Dr. Meaud investigates the mechanics and physics of complex biological systems and the mechanics and design of engineering materials using theoretical and computational tools. 

    One of his research interests is auditory mechanics. In this research, he develops computational multiphysics models of the mammalian ear based on the finite element method. The mammalian ear is a nonlinear transducer with excellent frequency selectivity, high sensitivity, and good transient capture. The goal of this basic scientific research is to better understand how the mammalian ear achieves these characteristics. This research could have important clinical applications as it could help in the development of better treatment and the improvement of diagnostic tools for hearing loss. It could also have engineering applications, such as the design of biometic sensors. This research is truly interdisciplinary as it includes aspects of computational mechanics, structural acoustics, nonlinear dynamics, biomechanics and biophysics. 

    Dr. Meaud is also interested in the mechanics, design and optimization of composite materials, particularly of their response to cyclic loads. Tradtional engineering and natural materials with high damping (such as rubber) tends to have low stiffness. However, the microarchitecture of composite materials that consist of a lossy polymer and a stiff constituent can be designed to simultaneously obtain high stiffness and high damping. Using computational tools such as finite element methods and topology optimization, the goal of Dr. Meaud's research is to design composite materials with these unconventional properties. One of his future goal is to extend the design of these materials to the finite strain regime and high frequency ranges, in order to obtained materials tailored for the targetted application. This research includes aspects of mechanics of materials, computational mechanics and structural dynamics. 

    In Dr. Meaud's research group, students will learn theoretical and computational techniques that are used extensively to solve engineering problems in academic research and industry. Students will develop knowledge and expertise in a broad array of mechanical engineering areas. The knowledge that students will gain in computational mechanics, nonlinear and structural dynamics, structural acoustics, dynamics and composite materials could be applied to many domains in their future career.

    julien.meaud@me.gatech.edu

    404-385-1301

    Office Location:
    Love 129

    Related Site

    Google Scholar

    Research Focus Areas:
    • Neuroscience
    • Systems Biology
    Additional Research:

    Meaud investigates the mechanics and physics of complex biological systems and the mechanics and design of engineering materials using theoretical and computational tools. One of his research interests is auditory mechanics. In this research, he develops computational multiphysics models of the mammalian ear based on the finite element method. The mammalian ear is a nonlinear transducer with excellent frequency selectivity, high sensitivity, and good transient capture. The goal of this basic scientific research is to better understand how the mammalian ear achieves these characteristics. This research could have important clinical applications as it could help in the development of better treatment and the improvement of diagnostic tools for hearing loss. It could also have engineering applications, such as the design of biometic sensors. This research is truly interdisciplinary as it includes aspects of computational mechanics, structural acoustics, nonlinear dynamics, biomechanics and biophysics. Dr. Meaud is also interested in the mechanics, design and optimization of composite materials, particularly of their response to cyclic loads. Tradtional engineering and natural materials with high damping (such as rubber) tends to have low stiffness. However, the microarchitecture of composite materials that consist of a lossy polymer and a stiff constituent can be designed to simultaneously obtain high stiffness and high damping. Using computational tools such as finite element methods and topology optimization, the goal of Dr. Meaud's research is to design composite materials with these unconventional properties. One of his future goal is to extend the design of these materials to the finite strain regime and high frequency ranges, in order to obtained materials tailored for the targetted application. This research includes aspects of mechanics of materials, computational mechanics and structural dynamics.


    IRI Connections:

    Yuhang Hu

    Yuhang Hu

    Yuhang Hu

    Associate Professor, Mechanical Engineering and Chemical and Biomolecular Engineering

    Dr. Yuhang Hu Joined the Woodruff School of Mechanical Engineering and the School of Chemical and Biomolecular Engineering at Georgia Institute of Technology as an assistant professor in August 2018. Prior to that, Dr. Hu was an assistant professor in the Department of Mechanical Science and Engineering at University of Illinois at Urbana-Champaign from 2015 to 2018. She received her Ph.D. from Harvard University in the area of Solid Mechanics. She worked in the area of Materials Chemistry as a post-doctoral fellow at Harvard from 2011 to 2014.

    yuhang.hu@me.gatech.edu

    404-894-2555

    Office Location:
    MRDC 4107

    Website

  • Mechanical Engineering Profile
  • Google Scholar

    Research Focus Areas:
    • Biomaterials
    • Molecular, Cellular and Tissue Biomechanics
    • Regenerative Medicine
    Additional Research:

    Our study focuses on Soft Active Materials especially those consisting both solid and liquid, such as gels, cells and soft biological tissues. Our research is at the interface between mechanics and materials chemistry. Our studies span from fundamental mechanics to novel applications.


    IRI Connections:

    W. Hong Yeo

    W. Hong Yeo

    W. Hong Yeo

    Professor, Woodruff School of Mechanical Engineering
    Faculty, Wallace H. Coulter Department of Biomedical Engineering
    Director, WISH Center

    W. Hong Yeo is a TEDx alumnus and biomechanical engineer. Since 2017, Yeo is a professor of the George W. Woodruff School of Mechanical Engineering and Program Faculty in Bioengineering at the Georgia Institute of Technology. Before joining Georgia Tech, he has worked at Virginia Commonwealth University Medicine and Engineering as an assistant professor from 2014-2016. Yeo received his BS in mechanical engineering from INHA University, South Korea in 2003 and he received his Ph.D. in mechanical engineering and genome sciences at the University of Washington, Seattle in 2011. From 2011-2013, he worked as a postdoctoral research fellow at the Beckman Institute and Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign. His research focuses on the fundamental and applied aspects of nanomechanics, biomolecular interactions, soft materials, and nano-microfabrication for nanoparticle biosensing and unusual electronic system development, with an emphasis on bio-interfaced translational nanoengineering. is an Editorial Board Member of Scientific Reports (Nature Publishing Group) and Scientific Pages of Bioengineering, and Review Editor of Frontiers of Materials (Frontiers Publishing Group). He serves as a technical committee member for IEEE Electronic Components and Technology Conference and Korea Technology Advisory Group at Korea Institute for Advancement of Technology. He has published more than 40 peer-reviewed journal articles, and has three issued and more than five pending patents. His research has been funded by MEDARVA Foundation, Thomas F. and Kate Miller Jeffress Memorial Trust, CooperVision, Inc., Korea Institute of Materials Science, Commonwealth Research Commercialization, and State Council of Virginia. Yeo is a recipient of a number of awards, including BMES Innovation and Career Development Award, Virginia Commercialization Award, Blavatnik Award Nominee, NSF Summer Institute Fellowship, Notable Korean Scientist Awards, and Best Paper/Poster Awards at ASME conferences.

    woonhong.yeo@me.gatech.edu

    404.385.5710

    Office Location:
    Pettit 204

    ME Profile Page

  • Center for Human-Centric Interfaces & Engineering
  • Google Scholar

    Research Focus Areas:
    • Flexible Electronics
    • Human Augmentation
    • Micro and Nano Device Engineering
    • Miniaturization & Integration
    • Neuroscience
    Additional Research:

    Human-machine interface; hybrid materials; bio-MEMS; Soft robotics. Flexible Electronics; Human-machine interface; hybrid materials; Electronic Systems, Devices, Components, & Packaging; bio-MEMS; Soft robotics. Yeo's research in the field of biomedical science and bioengineering focuses on the fundamental and applied aspects of biomolecular interactions, soft materials, and nano-microfabrication for the development of nano-biosensors and soft bioelectronics.


    IRI Connections:

    Younan Xia

    Younan Xia

    Younan Xia

    GRA Eminent Scholar in Nanomedicine, Wallace H. Coulter Department of Biomedical Engineering
    Professor, Wallace H. Coulter Department of Biomedical Engineering
    Brock Family Chair, Wallace H. Coulter Department of Biomedical Engineering
    Professor, School of Chemistry and Biochemistry, and School of Chemical and Biomolecular Engineering

    Xia is the Brock Family Chair and Georgia Research Alliance (GRA) Eminent Scholar in Nanomedicine in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, with joint appointments in School of Chemistry and Biochemistry, and School of Chemical and Biomolecular Engineering. Professor Xia received his Ph.D. degree in Physical Chemistry from Harvard University (with Professor George M. Whitesides) in 1996, his M.S. degree in Inorganic Chemistry from University of Pennsylvania (with the late Professor Alan G. MacDiarmid, a Nobel Laureate in Chemistry, 2000) in 1993, and his B.S. degree in Chemical Physics from the University of Science and Technology of China (USTC) in 1987. He came to the United States of America in 1991. Xia has received a number of prestigious awards, including the 2013 Nano Today Award, the ACS National Award in the Chemistry of Materials (2013), Fred Kavli Distinguished Lecture in Nanoscience at the MRS Spring Meeting (2013), AIMBE Fellow (2011), MRS Fellow (2009 ), NIH Director's Pioneer Award (2006), ACS Leo Hendrik Baekeland Award (2005), Camille Dreyfus Teacher Scholar (2002), David and Lucile Packard Fellowship in Science and Engineering (2000), Alfred P. Sloan Research Fellow (2000), NSF Early Career Development Award (2000), ACS Victor K. LaMer Award (1999), and Camille and Henry Dreyfus New Faculty Award (1997). Xia has been an Associate Editor of Nano Letters since 2002, and has served on the Advisory Boards of Particle & Particle Systems Characterization (2013-), Chemical Physics Letters (2013-), Chemistry: A European Journal (2013-), Chinese Journal of Chemistry (2013-), Angewandte Chemie International Edition (2011-), Advanced Healthcare Materials (2011-, inaugural chairman of the advisory board), Accounts of Chemical Research (2010-), Cancer Nanotechnology (2010-), Chemistry: An Asian Journal (2010-), Journal of Biomedical Optics (2010-), Nano Research (2009-), Science of Advanced Materials (2009-), Nano Today (2006-), Chemistry of Materials (2005-2007), Langmuir (2005-2010, 2013-2015), International Journal of Nanotechnology (2004-), and Advanced Functional Materials (2001-). He has also served as a Guest Editor of special issues for Advanced Materials (six times), Advanced Functional Materials (one time), MRS Bulletin (one time), and Accounts of Chemical Research (one time).

    younan.xia@bme.gatech.edu

    404.385.3209

    Office Location:
    MSE 3100J

    ChBE Profile Page

  • Nanocages Lab
  • Google Scholar

    Research Focus Areas:
    • Biobased Materials
    • Biomaterials
    • Cancer Biology
    • Chemical Biology
    • Drug Design, Development and Delivery
    • Miniaturization & Integration
    • Molecular, Cellular and Tissue Biomechanics
    • Nanomaterials
    • Regenerative Medicine
    Additional Research:
    Catalysis; Nanomedicine; Bio-Inspired Materials; Tissue Engineering

    IRI Connections:

    Minoru Shinohara

    Minoru  Shinohara

    Minoru Shinohara

    Associate Professor; School of Biological Sciences

    Physiological and biomechanical mechanisms underlying fine motor skills and their adjustments and adaptations to heightened sympathetic nerve activity, aging or inactivity, space flight or microgravity, neuromuscular fatigue, divided attention, and practice in humans. He uses state-of-the-art techniques in neuroscience, physiology, and biomechanics (e.g., TMS, EEG, fMRI, single motor unit recordings, microneurography, mechanomyography, ultrasound elastography, and exoskeleton robot) in identifying these mechanisms.

    shinohara@gatech.edu

    404.894.1030

    Office Location:
    555 14th St | Suite 1309C

    Departmental Profile Page

  • Human Neuromuscular Physiology Lab
  • Google Scholar

    Research Focus Areas:
    • Human Augmentation
    • Neuroscience
    • Systems Biology
    Additional Research:

    Neuromuscular Physiology


    IRI Connections:

    H. Jerry Qi

    H. Jerry Qi

    H. Jerry Qi

    Professor, Woodruff School of Mechanical Engineering
    Woodruff Faculty Fellow, Woodruff School of Mechanical Engineering

    H. Jerry Qi is a professor and the Woodruff Faculty Fellow in the George W. Woodruff School of Mechanical Engineering at Georgia Institute of Technology. He received his bachelor degrees (dual degree), master and Ph.D. degree from Tsinghua University (Beijing, China) and a ScD degree from Massachusetts Institute of Technology (Boston, MA, USA). After one year postdoc at MIT, he joined University of Colorado Boulder as an assistant professor in 2004, and was promoted to associate professor with tenure in 2010. He joined Georgia Tech in 2014 as an associate professor with tenure and was promoted to a full professor in 2016. Qi is a recipient of NSF CAREER award (2007). He is a member of Board of Directors for the Society of Engineering Science. In 2015, he was elected to an ASME Fellow. The research in Qi's group is in the general area of soft active materials, with a focus on 1) 3D printing of soft active materials to enable 4D printing methods; and 2) recycling of thermosetting polymers. The material systems include: shape memory polymers, light activated polymers, vitrimers. On 3D printing, they developed a wide spectrum of 3D printing capability, including: multIMaTerial inkjet 3D printing, digit light process (DLP) 3D printing, direct ink write (DIW) 3D printing, and fused deposition modeling (FDM) 3D printing. These printers allow his group to develop new 3D printing materials to meet the different challenging requirements. For thermosetting polymer recycling, his group developed methods that allow 100% recycling carbon fiber reinforced composites and electronic packaging materials. Although his group develops different novel applications, his work also relies on the understanding and modeling of material structure and properties under environmental stimuli, such as temperature, light, etc, and during material processing, such as 3D printing. Constitutive model developments are typically based on the observations from experiments and are then integrated with finite element through user material subroutines so that these models can be used to solve complicated 3D multiphysics problems involving nonlinear mechanics. A notable example is their recent pioneer work on 4D printing, where soft active materials is integrated with 3D printing to enable shape change (or time in shape forming process). Recently, his developed a state-of-the-art hybrid 3D printing station, which allows his group to integrate different polymers and conduct inks into one system. Currently, his group is working on using this printing station for a variety of applications, including printed 3D electronics, printed soft robots, etc.

    qih@me.gatech.edu

    404.385.2457

    Office Location:
    MRDC 4104

    Active Materials & Additive Manufacturing Lab

  • ME Profile Page
  • Google Scholar

    Research Focus Areas:
    • Biobased Materials
    • Biochemicals
    • Biorefining
    • Biotechnology
    • Materials and Nanotechnology
    • Molecular, Cellular and Tissue Biomechanics
    • Pulp Paper Packaging & Tissue
    • Sustainable Manufacturing
    Additional Research:

    Additive/Advanced Manufacturing; micro and nanomechanics; Recycling; Soft Materials; Conducting Polymers


    IRI Connections:

    Mark Prausnitz

    Mark Prausnitz

    Mark Prausnitz

    Regents' Professor, School of Chemical and Bimolecular Engineering
    J. Erskine Love Jr. Chair; Chemical and Biomolecular Engineering
    Director, Center for Drug Design, Development and Delivery

    Professor Mark R. Prausnitz is a Regents' Professor and the Love Family Professor in Chemical and Bimolecular Engineering in the School of Chemical & Bimolecular Engineering. He received his B.S. in 1988 from Stanford University and his Ph.D. in 1994 from the Massachusetts Institute of Technology. Professor Prausnitz and his colleagues carry out research on biophysical methods of drug delivery, which employ microneedles, ultrasound, lasers, electric fields, heat, convective forces and other physical means to control the transport of drugs, proteins, genes and vaccines into and within the body. A major area of focus involves the use of microneedle patches to apply vaccines to the skin in a painless, minimally invasive manner. In collaboration with Emory University, the Centers for Disease Control and Prevention, and other organizations, Professor Prausnitz's group is advancing microneedles from device design and fabrication through pharmaceutical formulation and pre-clinical animal studies through studies in human subjects. In addition to developing a self-administered influenza vaccine using microneedles, Professor Prausnitz is translating microneedle technology especially to make vaccination in developing countries more effective. The Prausnitz group has also developed hollow microneedles for injection into the skin and into the eye in collaboration with Emory University. In the skin, research focuses on insulin administration to human diabetic patients to increase onset of action by targeting insulin delivery to the skin. In the eye, hollow microneedles enable precise targeting of injection to the suprachoroidal space and other intraocular tissues for minimally invasive delivery to treat macular degeneration and other retinal diseases. Professor Prausnitz and colleagues also study novel mechanisms to deliver proteins, DNA and other molecules into cells. Cavitation bubble activity generated by ultrasound and by laser-excitation of carbon nanoparticles breaks open a small section of the cell membrane and thereby enables entry of molecules, which is useful for gene-based therapies and targeted drug delivery. In addition to research activities, Professor Prausnitz teaches an introductory course on engineering calculations, as well as two advanced courses on pharmaceuticals and technical communication, both of which he developed. He also serves the broader scientific and business communities as a frequent consultant, advisory board member and expert witness.

    Faces of Research - Profile Article

    mark.prausnitz@chbe.gatech.edu

    404.894.5135

    Office Location:
    Petit 1312

    Center for Drug Design, Development and Delivery

  • ChBE Profile Page
  • Google Scholar

    Research Focus Areas:
    • Cancer Biology
    • Drug Design, Development and Delivery
    • Materials and Nanotechnology
    • Miniaturization & Integration
    • Nanomaterials
    Additional Research:
    Micro and Nano Engineering; Nanomedicine; microneedle patches; Microfabrication; nanoparticle drug delivery

    IRI Connections:

    Valeria Milam

    Valeria Milam

    Valeria Milam

    Associate Professor, School of Materials Science and Engineering

    Valeria Tohver Milam joined the School of Materials Science and Engineering at Georgia Institute of Technology as an assistant professor in July 2004. She received her B.S. in Materials Science and Engineering with Honors from the University of Florida in 1993. After completing her M.S. degree (1997) in MSE at the University of Illinois, Urbana-Champaign, she interned at Sandia National Laboratories. She then completed her doctoral work at UIUC studying the phase behavior, structure and properties of nanoparticle-microsphere suspensions. Experimental results suggested a novel colloidal stabilization mechanism known as nanoparticle “haloing” in which otherwise negligibly charged microspheres become effectively charge-stabilized by their surrounding shell of highly charged nanoparticles.

    After finishing her Ph.D. in 2001, her postdoctoral studies at the University of Pennsylvania focused on DNA-mediated colloidal assembly. The degree of specific attraction between DNA-grafted microspheres was found to vary with sequence length, sequence concentration and ionic strength. A variety of structures such as colloidal chains, rings and satellites were formed by varying the particle size ratio and suspension composition.

    valeria.milam@mse.gatech.edu

    404.894.2845

    Office Location:
    MoSE 3100L

    MSE Profile Page

  • Marcus Center for Therapeutic Cell Characterization and Manufacturing
  • Google Scholar

    Research Focus Areas:
    • Biobased Materials
    • Biomaterials
    • Cancer Biology
    • Drug Design, Development and Delivery
    Additional Research:

    Bio-Inspired Materials; Polymers; Nanostructured Materials; Colloids; Drug Delivery


    IRI Connections: