Arijit Raychowdhury

Arijit Raychowdhury

Arijit Raychowdhury

Chair, School of Electrical and Computer Engineering
ON Semiconductor Professor, School of Electrical and Computer Engineering

Arijit Raychowdhury is currently an Professor in the School of Electrical and Computer Engineering at the Georgia Institute of Technology where he joined in January, 2013. He received his Ph.D. degree in Electrical and Computer Engineering from Purdue University (2007) and his B.E. in Electrical and Telecommunication Engineering from Jadavpur University, India (2001). His industry experience includes five years as a Staff Scientist in the Circuits Research Lab, Intel Corporation, and a year as an Analog Circuit Designer with Texas Instruments Inc. His research interests include low power digital and mixed-signal circuit design, design of power converters, sensors and exploring interactions of circuits with device technologies. Raychowdhury holds more than 25 U.S. and international patents and has published over 80 articles in journals and refereed conferences. He serves on the Technical Program Committees of DAC, ICCAD, VLSI Conference, and ISQED and has been a guest associate-editor for JETC. He has also taught many short courses and invited tutorials at multiple conferences, workshops and universities. He is the winner of the Intel Labs Technical Contribution Award, 2011; Dimitris N. Chorafas Award for outstanding doctoral research, 2007; the Best Thesis Award, College of Engineering, Purdue University, 2007; Best Paper Awards at the International Symposium on Low Power Electronic Design (ISLPED) 2012, 2006; IEEE Nanotechnology Conference, 2003; SRC Technical Excellence Award, 2005; Intel Foundation Fellowship, 2006; NASA INAC Fellowship, 2004; M.P. Birla Smarak Kosh (SOUTH POINT) Award for Higher Studies, 2002; and the Meissner Fellowship 2002. Raychowdhury is a Senior Member of the IEEE

arijit.raychowdhury@ece.gatech.edu

404.894.1789

Office Location:
Klaus 2362

ECE Profile Page

  • Integrated Circuits & Systems Research Lab
  • Google Scholar

    Research Focus Areas:
    • Computer Engineering
    • Micro and Nano Device Engineering
    • Miniaturization & Integration
    • Mobile & Wireless Communications
    • Optics & Photonics
    • Semiconductors
    Additional Research:

    Design of low power digital circuits with emphasis on adaptability and resiliencyDesign of voltage regulators, adaptive clocking, and power managementDevice-circuit interactions for logic and storageAlternative compute architectures


    IRI Connections:

    Lewis Wheaton

    Lewis Wheaton

    Lewis Wheaton

    Associate Professor
    Adjunct Associate Professor, Department of Rehabilitation Medicine, Emory University

    Dr. Lewis A. Wheaton received his Ph.D. in Neuroscience and Cognitive Sciences from the University of Maryland, College Park in 2005. He was a fellow at the National Institutes of Health (Medical Neurology Branch, 2001-2005) studying neural function and recovery of motor control after stroke. In mid-2005 he was awarded a post-doctoral fellowship at the Baltimore Veterans Affairs Medical Center (Maryland) where he performed neuroscience research in aging and stroke motor control in Veterans.

    In 2008, Dr. Wheaton joined the School of Applied Physiology at Georgia Tech as an Assistant Professor. He became tenured in 2014 and is currently an Associate Professor in Biological Sciences. Dr. Wheaton is the Director of the Cognitive Motor Control Laboratory at Georgia Tech, engaged in over $1 million in state and federal research funding focused on understanding aspects of human motor control rehabilitation in aging, stroke and amputation. His lab has employed numerous high school, undergraduate, graduate, and post-doctoral fellows. He is the course director for 4 courses in the School of Biological Sciences (Human Neuroimaging, Movement Disorders, Human Neuroanatomy, and the History of Neuroscience). He has Chaired/Co-Chaired 3 international conferences focused on motor control research and clinical outcomes, obtaining funding by federal and private sources. His research has yielded several manuscript publications in the field of motor control neuroscience, several focused expert reviews, and numerous conference presentations both in the US and abroad.

    Dr. Wheaton is also an adjunct Associate Professor in the Department of Rehabilitation at Emory School of Medicine and a Member of the Children’s Center for Neurosciences Research at the Emory Children’s Pediatric Research Center.

    Dr. Wheaton earned a BS (Biology) degree at Radford University (VA). He is an active parent volunteer at his children's schools and in the local community.

    lewis.wheaton@ap.gatech.edu

    404-385-2339

    Office Location:
    555 14th Street 1309E

    Website

  • http://biosci.gatech.edu/people/Lewis-Wheaton
  • News Story about C-PIES Appointment
  • Google Scholar

    Research Focus Areas:
    • Neuroscience
    Additional Research:

    The Cognitive Motor Control Laboratory seeks to understand neurophysiology guiding skillful human-object interactions in upper extremity motor control. We use neuroimaging to identify anatomical and physiological circuits in humans that guide successful skilled behavior. Our clinical studies consider neural systems that can suffer injury or dysfunction related to deficits in skillful motor control, and how to utilize surrogate neural circuits in restorative motor therapies in stroke and upper limb amputation.


    IRI Connections:

    Hyojung Choo

    Hyojung Choo

    Hyojung Choo

    Assistant Professor

    hyojung.choo@emory.edu

    404-727-3727

    Office Location:
    542 Whitehead Research Building, Emory School of Medicine

  • Related Site
  • University, College, and School/Department
    Research Focus Areas:
    • Molecular, Cellular and Tissue Biomechanics
    Additional Research:

    "Craniofacial muscles are essential muscles for normal daily life. They are involved in facial expressions (facial muscles), blinking and eye movement (eye muscles), as well as speaking and eating (tongue and pharyngeal muscles). Interestingly, craniofacial muscles have differential susceptibility to several muscular dystrophies. For example, craniofacial muscles are the most affected muscles in oculopharyngeal muscular dystrophy but the least affected muscles in Duchenne muscular dystrophy. Among craniofacial muscles, dysfunction of tongue and pharyngeal muscles could cause an eating disability, called dysphagia, afflicts almost 15 million Americans including elderly, neuronal (Parkinson's disease and bulbar-onset amyotrophic lateral sclerosis) and muscular disease (oculopharyngeal muscular dystrophy) patients. However, no cure or therapeutic treatment exists for dysphagia caused by muscular dystrophy. Elucidation of the mechanism(s) behind these differing susceptibilities of craniofacial muscles could lead to development of potential therapeutics targeted to specific skeletal muscles involved in particular types of muscular dystrophy. The mechanisms of skeletal muscles are of interest here because skeletal muscle cells are multinucleated cells. Typically, skeletal muscle cells contain hundreds of nuclei in a single cell since they are generated by fusion of muscle precursor cells during development or by fusion of muscle specific stem cells, called satellite cells, in adult skeletal muscles. However, it is unclear how skeletal muscle cells regulate the quantity and quality of these multi-nuclei. Since craniofacial skeletal muscles, such as extraocular and pharyngeal muscles, have active satellite cell fusion in comparison to limb muscles, they are therefore suitable models to study myonuclear addition and homeostasis."


    IRI Connections:

    Josiah Hester

    Josiah Hester

    Josiah Hester

    Interim Associate Director for Community-Engaged Research
    Catherine M. and James E. Allchin Early Career Professor
    Professor
    Director, Ka Moamoa – Ubiquitous and Mobile Computing Lab
    BBISS Lead: Computational Sustainability

    Josiah Hester works broadly in computer engineering, with a special focus on wearable devices, edge computing, and cyber-physical systems. His Ph.D. work focused on energy harvesting and battery-free devices that failed intermittentently. He now focuses on sustainable approaches to computing, via designing health wearables, interactive devices, and large-scale sensing for conservation. 
       
    His work in health is focused on increasing accessibility and lowering the burden of getting preventive and acute healthcare. In both situations, he designs low-burden, high-fidelity wearable devices that monitor aspects of physiology and behavior, and use machine learning techniques to suggest or deliver adaptive and in-situ interventions ranging from pharmacological to behavioral. 
       
    His work is supported by multiple grants from the NSF, NIH, and DARPA. He was named a Sloan Fellow in Computer Science and won his NSF CAREER in 2022. He was named one of Popular Science's Brilliant Ten, won the American Indian Science and Engineering Society Most Promising Scientist/Engineer Award, and the 3M Non-tenured Faculty Award in 2021. His work has been featured in the Wall Street Journal, Scientific American, BBC, Popular Science, Communications of the ACM, and the Guinness Book of World Records, among many others.

    josiah@gatech.edu

    Office Location:
    TSRB 246

    Personal Site

  • Ka Moamoa
  • BBISS Initiative Lead Project—Computational Sustainability
  • Research Focus Areas:
    • Climate & Environment
    • Computer Engineering
    • Cyber-Physical Systems
    • Energy Harvesting
    • Flexible Electronics
    • Lifelong Health and Well-Being
    • Medical Device Design, Development and Delivery
    • Micro and Nano Device Engineering
    • Mobile & Wireless Communications
    • Smart Cities and Inclusive Innovation
    • Social & Environmental Impacts
    • Sustainable Engineering

    IRI Connections:

    Animesh Garg

    Animesh Garg

    Animesh Garg

    Assistant Professor

    Animesh Garg is a Stephen Fleming Early Career Assistant Professor at School of Interactive Computing at Georgia Tech. He leads the People, AI, and Robotics (PAIR) research group. He is on the core faculty in the Robotics and Machine Learning programs. Animesh is also a Senior Researcher at Nvidia Research. Animesh earned a Ph.D. from UC Berkeley and was a postdoc at the Stanford AI Lab. He is on leave from the department of Computer Science at University of Toronto and CIFAR Chair position at the Vector Institute.

    Garg earned his M.S. in Computer Science and Ph.D. in Operations Research from UC, Berkeley. He worked with Ken Goldberg at Berkeley AI Research (BAIR). He also worked closely with Pieter Abbeel, Alper Atamturk & UCSF Radiation Oncology. Animesh was later a postdoc at Stanford AI Lab with Fei-Fei Li and Silvio Savarese.

    Garg's research vision is to build the Algorithmic Foundations for Generalizable Autonomy, that enables robots to acquire skills, at both cognitive & dexterous levels, and to seamlessly interact & collaborate with humans in novel environments. His group focuses on understanding structured inductive biases and causality on a quest for general-purpose embodied intelligence that learns from imprecise information and achieves flexibility & efficiency of human reasoning.

    animesh.garg@gatech.edu

    Personal Profile Page

    Google Scholar

    Research Focus Areas:
    • Foundations of Robotics
    • Human-Centered Robotics
    • Machine Learning
    • Robotics
    Additional Research:

    Robot Learning3D Vision and Video ModelsCausal InferenceReinforcement LearningCurrent Applications: Mobile-Manipulation in Retail/Warehouse, personal, and surgical robotics


    IRI Connections:

    Daniel Goldman

    Daniel Goldman

    Daniel Goldman

    Dunn Family Professor; School of Physics
    Director; Complex Rheology And Biomechanics (CRAB) Lab

    My research integrates my work in complex fluids and granular media and the biomechanics of locomotion of organisms and robots to address problems in nonequilibrium systems that involve interaction of matter with complex media. For example, how do organisms like lizards, crabs, and cockroaches cope with locomotion on complex terrestrial substrates (e.g. sand, bark, leaves, and grass). I seek to discover how biological locomotion on challenging terrain results from the nonlinear, many degree of freedom interaction of the musculoskeletal and nervous systems of organisms with materials with complex physical behavior. The study of novel biological and physical interactions with complex media can lead to the discovery of principles that govern the physics of the media. My approach is to integrate laboratory and field studies of organism biomechanics with systematic laboratory studies of physics of the substrates, as well as to create mathematical and physical (robot) models of both organism and substrate. Discovery of the principles of locomotion on such materials will enhance robot agility on such substrates

    dgoldman3@gatech.edu

    404.894.0993

    Office Location:
    Howey C202

    The Crab Lab

  • Profile on GT Physics
  • Google Scholar

    University, College, and School/Department
    Research Focus Areas:
    • Autonomy
    • Molecular, Cellular and Tissue Biomechanics
    • Neuroscience
    • Systems Biology
    Additional Research:

    biomechanics; neuromechanics; granular media; robotics; robophysics


    IRI Connections:

    Omer Inan

    Omer Inan

    Omer Inan

    Professor, School of Electrical and Computer Engineering
    Linda J. and Mark C. Smith Chair, School of Electrical and Computer Engineering

    Omer T. Inan received his B.S., M.S., and Ph.D. degrees in Electrical Engineering from Stanford University in 2004, 2005, and 2009, respectively.

    He worked at ALZA Corporation in 2006 in the Drug Device Research and Development Group. From 2007-2013, he was chief engineer at Countryman Associates, Inc., designing and developing several high-end professional audio products. From 2009-2013, he was a visiting scholar in the Department of Electrical Engineering at Stanford. In 2013, he joined the School of ECE at Georgia Tech as an assistant professor.

    Inan is generally interested in designing clinically relevant medical devices and systems, and translating them from the lab to patient care applications. One strong focus of his research is in developing new technologies for monitoring chronic diseases at home, such as heart failure.

    He and his wife were both varsity athletes at Stanford, competing in the discus and javelin throw events respectively.

    omer.inan@ece.gatech.edu

    404.385.1724

    Office Location:
    TSRB 417

    INAN RESEARCH LAB

  • ECE Profile Page
  • Google Scholar

    Research Focus Areas:
    • Flexible Electronics
    • Human Augmentation
    • Medical Device Design, Development and Delivery
    • Micro and Nano Device Engineering
    • Miniaturization & Integration
    • Robotics
    Additional Research:

    Medical devices for clinically-relevant applicationsNon-invasive physiological monitoringHome monitoring of chronic diseaseCardiomechanical signalsMedical instrumentation


    IRI Connections:

    Brian Gunter

    Brian Gunter

    Brian Gunter

    Associate Professor

    Dr. Gunter is an Assistant Professor in Aerospace Engineering at the Georgia Institute of Technology. He received his B.S. in mechanical engineering from Rice University, and later his M.S. and Ph.D. in aerospace engineering from the University of Texas at Austin, specializing in orbital mechanics. Prior to joining Georgia Tech, Dr. Gunter was on the faculty of the Delft University of Technology (TU-Delft) in the Netherlands, as a member of the Physical and Space Geodesy section. His research activities involve various aspects of spacecraft missions and their applications, such as investigations into current and future laser altimetry missions, monitoring changes in the polar ice sheets using satellite data, applications of satellite constellations/formations, and topics surrounding kinematic orbit determination. He has been responsible for both undergraduate and graduate courses on topics such as satellite orbit determination, Earth and planetary observation, scientific applications of GPS, and space systems design. He is currently a member of the AIAA Astrodynamics Technical Committee, and also serves as the Geodesy chair for the Fall AGU Meeting Program Committee. He has received a NASA group achievement award for his work on the GRACE mission, and he is also a former recipient of a NASA Earth System Science Graduate Fellowship. He is a member of the American Institute of Aeronautics and Astronautics (AIAA), the American Geophysical Union (AGU), and the International Association of Geodesy (IAG).

    brian.gunter@ae.gatech.edu

    404.385.2345

    Office Location:
    ESM 205

    Reaearch Website

    Google Scholar

    Research Focus Areas:
    • Autonomy
    Additional Research:

    satellite geodesy; space systems; orbital mechanics; Earth and planetary observation; remote sensing


    IRI Connections:

    Martin Maldovan

    Martin Maldovan

    Martin Maldovan

    Associate Professor, School of Chemical and Biomolecular Engineering and School of Physics

    Martin Maldovan is an associate professor in the School of Chemical and Biomolecular Engineering and the School of Physics at the Georgia Institute of Technology. He received his Ph.D. at the Massachusetts Institute of Technology (MIT) in the Department of Materials Science and Engineering. He was also a postdoctoral associate and research scientist at MIT.  Maldovan’s group is developing novel heat and mass transport processes as an enabling technology for energy converter materials and devices, micro and nanoelectronics, chemical and biological separations, and catalysis. His group focuses on designing, predicting, and controlling heat and mass transfer in rationally engineered systems with length scales ranging from macro to nano, to advance new paradigms for energy saving materials and devices.  

    maldovan@gatech.edu

    404.385.3753

    Office Location:
    ES&T L1226

    ChBE Profile Page

  • Maldovan Research Group
  • Google Scholar

    University, College, and School/Department
    Research Focus Areas:
    • Energy Generation, Storage, and Distribution
    • Materials for Energy
    Additional Research:

    Thermal Management; Energy Storage; Energy Conversion; Thermal Systems


    IRI Connections: