Dennis Hess

Dennis Hess

Dennis Hess

Professor Emeritus, School of Chemical and Biomolecular Engineering

Dennis Hess’s research interests are in thin film science and technology, surface and interface modification and characterization, microelectronics processing and electronic materials. His group focuses on the establishment of fundamental structure-property relationships and their connection to chemical process sequences used in the fabrication of novel films, electronic materials, devices, and nanostructures. Control of the surface properties of materials such as dielectrics, semiconductors, metals, and paper or paper board by film deposition or surface modification allows the design of such surfaces for a variety of applications in microelectronics, packaging, sensors, microfluidics, and separation processes.

dennis.hess@chbe.gatech.edu

(404) 894-5922

ChBE Profile Page

  • Hess Group
  • University, College, and School/Department
    Research Focus Areas:
    • Biobased Materials
    • Biochemicals
    • Biorefining
    • Biotechnology
    • Electronic Materials
    • Miniaturization & Integration
    • Pulp Paper Packaging & Tissue
    • Sustainable Manufacturing
    • Use & Conservation
    Additional Research:
    Electronics; Thin Films; Surfaces and Interfaces; plasma processing; Papermaking; Coatings & Barriers; Films & Coatings; Biomaterials

    IRI Connections:

    Mark Losego

    Mark Losego

    Mark Losego

    Associate Professor, MSE Faculty Fellow, and Dean’s Education Innovation Professor
    IMS Initiative Lead, AI for Chemicals and Materials Discovery

    Mark D. Losego is an associate professor in the School of Materials Science and Engineering at Georgia Tech. The Losego research lab focuses on materials processing to develop novel organic-inorganic hybrid materials and interfaces for microelectronics, sustainable energy devices, national security technologies, and advanced textiles. The Losego Lab combines a unique set of solution and vapor phase processing methods to convert organic polymers into organic-inorganic hybrid materials, including developing the science to scale these processes for manufacturing.  Prof. Losego’s work is primarily experimental, and researchers in his lab gain expertise in the vapor phase processing of materials (atomic layer deposition, physical vapor deposition, vapor phase infiltration, etc.), the design and construction of vacuum equipment, interfacial and surface science, and materials and surface characterization. Depending on the project, Losego Lab researchers explore a variety of properties ranging from electrical to electrochemical to optical to thermal to sorptive to catalytic and more.

    losego@gatech.edu

    404.385.3630

    Research Website

  • Related Site
  • Research Focus Areas:
    • Biobased Materials
    • Biochemicals
    • Biorefining
    • Biotechnology
    • Electronic Materials
    • Pulp Paper Packaging & Tissue
    • Sustainable Manufacturing
    Additional Research:
    Catalysis; Cellulose Nanomaterials; Coatings; Coatings and Barriers; Corrosion & Materials Engineering; Corrosion and Reliability; Energy; Films and Coatings; Microporous Materials; Nanocellulose Applications; Nanomaterials; New Materials; Polymers; Vapor Phase Processing

    IRI Connections:

    Zhiqun Lin

    Zhiqun Lin

    Zhiqun Lin

    Professor, Materials Science and Engineering

    Zhiqun Lin is currently Professor of Materials Science and Engineering at the Georgia Institute of Technology. His research focuses on nanostructured functional materials (NanoFM). An extensive list of materials currently under investigation in his group includes polymer-based nanocomposites, block copolymers, polymer blends, conjugated polymers, quantum dots (rods, tetrapods, wires), magnetic nanocrystals, metallic nanocrystals, semiconductor metal oxide nanocrystals, ferroelectric nanocrystals, multiferroic nanocrystals, upconversion nanocrystals, thermoelectric nancrystals, core/shell nanoparticles (nanorods), hollow nanocrystals, Janus nanocrystals, nanopores, nanotubes, hierarchically structured and assembled materials, and semiconductor organic-inorganic nanohybrids.

    The goal of his research is to understand the fundamentals of these nanostructured materials. His group intends to create these nanostructures in a precisely controllable manner and to exploit the structure-property relationships in the development of multifunctional materials for potential use in energy conversion (e.g., solar cells, photocatalysis, and hydrogen generation) and storage (e.g., batteries), electronics, optics, optoelectronics, magnetic materials and devices, nanotechnology, and biotechnology.

    zhiqun.lin@mse.gatech.edu

    404.385.4404

    Office Location:
    MOSE 3100K

    MSE Profile Page

  • Nanosctructure Functional Materials Group
  • Google Scholar

    Research Focus Areas:
    • Energy Generation, Storage, and Distribution
    • Materials for Energy
    Additional Research:
    Nanocomposites; Polymeric Composites; Polymers; Nanocrystals; Self-Assembly; Solar Cells; Batteries; Composites; Nanostructures; Electronics; Energy Storage

    IRI Connections:

    Natalie Stingelin

    Natalie  Stingelin

    Natalie Stingelin

    Professor, School of Chemical and Biomolecular Engineering

    Previously a professor of organic functional materials at the Department of Materials, Imperial College of London, Natalie Stingelin joined Georgia Tech in 2016. She focuses her research on the broad field of organic functional materials, including organic electronics; multifunctional inorganic/organic hybrids; smart, advanced optical systems based on organic matter; and bioelectronics. Associate Editor of the Journal of Materials Chemistry, she has published more than 130 papers and 6 issued patents. She is a co-investigator of the newly established EPSRC Centre for Innovative Manufacturing in Large Area Electronics, and she leads the EC Marie-Curie Training Network 'INFORM' that involves 11 European partners. She was awarded the Institute of Materials, Minerals & Mining's Rosenhain Medal and Prize (2014) and the Chinese Academy of Sciences (CAS) President's International Fellowship Initiative (PIFI) Award for Visiting Scientists (2015).

    natalie.stingelin@mse.gatech.edu

    404.894.5192

    Office Location:
    ES&T L1220

    ChBE Profile Page

  • Stingelin Lab
  • Google Scholar

    University, College, and School/Department
    Research Focus Areas:
    • Nanomaterials
    Additional Research:
    Organic electronics; Bioelectronics

    IRI Connections:

    Meisha Shofner

    Meisha Shofner

    Meisha Shofner

    Professor, School of Materials Science and Engineering

    Meisha L. Shofner is a professor in the School of Materials Science and Engineering at Georgia Institute of Technology, joining the faculty following post-doctoral training at Rensselaer Polytechnic Institute. She received her B.S. in Mechanical Engineering from The University of Texas at Austin and her Ph.D. in Materials Science from Rice University. Prior to beginning graduate school, she was employed as a design engineer at FMC in the Subsea Engineering Division, working at two plant locations (Houston, Texas and the Republic of Singapore), and she is a registered Professional Engineer in Georgia.

    Shofner’s research area is processing-structure-property relationships of polymers and composites. Specifically, she designs processing strategies to attain hierarchical structures in these materials to improve properties and has discovered scalable processing methods to produce auxetic structures and tensegrity-inspired structures. Additionally, she works with bioderived materials to produce composites with reduced environmental impact.  

    meisha.shofner@mse.gatech.edu

    404.385.7216

    Office Location:
    MRDC 4409

    Shofner Lab

  • MSE Profile Page
  • Google Scholar

    Research Focus Areas:
    • Advanced Composites
    • Materials & Manufacturing
    • Materials and Nanotechnology
    • Renewable Energy
    Additional Research:
    Biomolecular-Solids; Biomaterials; Composites; Polymers; Nanomaterials; Biofuels; Structure-property relationships in polymer nanocomposite materials; producing structural hierarchy in these materials for structural and functional applications.

    IRI Connections:

    Krista Walton

    Krista Walton

    Krista Walton

    Professor, School of Chemical and Biomolecular Engineering
    Robert "Bud" Moeller Faculty Fellow, School of Chemical and Biomolecular Engineering
    Associate Dean for Research and Innovation, College of Engineering

    Krista S. Walton is the Associate Dean for Research & Innovation in the College of Engineering and Professor and Robert "Bud" Moeller Faculty Fellow in the School of Chemical and Biomolecular Engineering at Georgia Tech. She received her B.S.E. in chemical engineering from the University of Alabama-Huntsville in 2000 and obtained her Ph.D. in chemical engineering from Vanderbilt University in 2005, working with Prof. M. Douglas LeVan. Prof. Walton completed an ACS PRF Postdoctoral Fellowship at Northwestern University in 2006 under the direction of Prof. Randall Snurr.

    Her research program focuses on the design, synthesis, and characterization of functional porous materials for use in adsorption applications including carbon dioxide capture and air purification. She has published > 80 peer-reviewed articles and presented dozens of plenary lectures and invited seminars. Prof. Walton currently serves as an Associate Editor for the ACS Journal Industrial & Engineering Chemistry Research, and is the Director and Lead PI of Georgia Tech’s DOE Energy Frontier Research Center, UNCAGE-ME. Prof. Walton’s accomplishments have been recognized by many prestigious awards including the inaugural International Adsorption Society Award for Excellence in Publications by a Young Member of the Society (2013) and the Presidential Early Career Award for Scientists and Engineers (2008).

    krista.walton@chbe.gatech.edu

    404.894.5254

    Office Location:
    Bunger-Henry 421

    Nanomaterials & Adsorption Lab

  • ChBE Profile Page
  • Research Focus Areas:
    • Aerogels & Hydrogels
    • Biochemicals
    • Carbon Capture
    • Catalysis
    • Energy & Water
    • Environmental Processes
    • Materials for Energy
    • Separation Technologies
    Additional Research:
    CO2 Capture; Climate Change Mitigation; Metal-Organic Frameworks; Separation Membranes; Biofuels; Carbon Capture; Catalysis; Separations Technology; Environmental Processes; Energy & Water; Separation Technologies; Aerogels & Hydrogels; Biochemicals

    IRI Connections:

    Joseph Perry

    Joseph Perry

    Joseph Perry

    Professor

    joe.perry@chemistry.gatech.edu

    (404) 385-6046

    Research Website

  • http://www.chemistry.gatech.edu/faculty/perry/
  • Research Focus Areas:
    • Biobased Materials
    • Biochemicals
    • Biorefining
    • Biotechnology
    • Pulp Paper Packaging & Tissue
    • Sustainable Manufacturing
    Additional Research:
    Analytical Chemistry; Characterization; Energy; Sustainability; Materials Chemistry; Molecular Biophysics; Nanoscience and Technology; Physical Chemistry; Polymer Chemistry; Spectroscopy; Surface and Interfacial Chemistry; Theory and Modeling

    IRI Connections:

    Christopher Jones

    Christopher Jones

    Christopher Jones

    Professor and John F. Brock III School Chair, School of Chemical and Biomolecular Engineering

    Chris Jones was born in suburban Detroit, Michigan in July of 1973. After his primary and secondary schooling and 14 years living Troy, Michigan, he enrolled as a chemical engineering student at the University of Michigan. In route to earning a BSE in chemical engineering, Chris carried out research on transition metal carbide and nitride catalytic materials under the direction of Levi Thompson. After graduating in 1995, Chris moved to Pasadena, California, to study inorganic materials chemistry and catalysis under Mark E. Davis at Caltech. There he earned M.S. and Ph.D. degrees in chemical engineering in 1997 and 1999, respectively. Subsequently, he studied organometallic chemistry and olefin polymerization under the direction of both Davis and John E Bercaw at Caltech. He started as an assistant professor at Georgia Tech in the summer of 2000 and was promoted to associate professor in July 2005. In May, 2005, he was appointed the J. Carl and Sheila Pirkle Faculty Fellow, followed by a promotion to professor in July 2008. He was named New-Vision Professor of Chemical and Biomolecular Engineering in July 2011. In 2015, he became the Love Family Professor of Chemical and Biomolecular Engineering, and in 2019 the William R. McLain Chair. Chris was named the associate vice president for research at Georgia Tech in November 2013. In this role, he directed 50% of his time on campus-wide research administration with a primary focus on interdisciplinary research efforts and policy related to research institutes, centers and research core facilities. In 2018, he served as the interim executive vice-president for research, before returning full time to his research and teaching roles in chemical and biomolecular engineering in 2019.

    Jones directs a research program focused primarily on catalysis and CO2 separation, sequestration and utilization. A major focus of his laboratory is the development of materials and processes for the removal of CO2 from air, or “direct air capture” (DAC). In 2010 he was honored with the Ipatieff Prize from the American Chemical Society for his work on palladium catalyzed Heck and Suzuki coupling reactions. That same year, he was selected as the founding Editor-in-Chief of ACS Catalysis, a new multi-disciplinary catalysis journal published by the American Chemical Society. In 2013, Chris was recognized by the North American Catalysis Society with the Paul E. Emmett Award in Fundamental Catalysis and by the American Society of Engineering Education with the Curtis W. McGraw Research Award. In 2016 he was recognized by the American Institute of Chemical Engineers with the Andreas Acrivos Award for Professional Progress in Chemical Engineering, distinguishing him as one of the top academic chemical engineers under 45. In 2020, after ten years building and leading ACS Catalysis, he was selected as the founding Editor-in-Chief of JACS Au by an international editorial search committee commissioned by the ACS. Dr. Jones has been PI or co-PI on over $72M in sponsored research in the last seventeen years, and as of December 2020, has published over 300 papers that have been cited >28,000 times. He has an H-Index of 82 (Google Scholar).

    cjones@chbe.gatech.edu

    404.385.1683

    Office Location:
    ES&T 2202

    ChBE Profile Page

  • Jones Group Website
  • Google Scholar

    Research Focus Areas:
    • Fuels & Chemical Processing
    • Materials for Energy
    • Renewable Energy
    Additional Research:
    CO2 capture, catalysis, membrane and separations, separations technology, catalysis, carbon capture, biofuels

    IRI Connections:

    Valerie Thomas

    Valerie Thomas

    Valerie Thomas

    Anderson-Interface Chair of Natural Systems
    Professor
    RBI Initiative Lead: Sustainability Analysis

    Valerie Thomas is the Anderson-Interface Chair of Natural Systems and Professor in the H. Milton School of Industrial and Systems Engineering, with a joint appointment in the School of Public Policy. 

    Dr. Thomas's research interests are energy and materials efficiency, sustainability, industrial ecology, technology assessment, international security, and science and technology policy. Current research projects include low carbon transportation fuels, carbon capture, building construction, and electricity system development. Dr. Thomas is a Fellow of the American Association for the Advancement of Science, and of the American Physical Society. She has been an American Physical Society Congressional Science Fellow, a Member of the U.S. EPA Science Advisory Board, and a Member of the USDA/DOE Biomass Research and Development Technical Advisory Committee. 

    She has worked at Princeton University in the Princeton Environmental Institute and in the Center for Energy and Environmental Studies, and at Carnegie Mellon University in the Department of Engineering and Public Policy.

    Dr. Thomas received a B. A. in physics from Swarthmore College and a Ph.D. in theoretical physics from Cornell University.

    valerie.thomas@isye.gatech.edu

    (404) 894-0390

    ISyE Profile

  • Website
  • Research Focus Areas:
    • Biobased Materials
    • Biochemicals
    • Biorefining
    • Biotechnology
    • Gigatechnology
    • Hydrogen Storage & Transport
    • Hydrogen Utilization
    • Pulp Paper Packaging & Tissue
    • Renewable Energy
    • Social & Environmental Impacts
    • Sustainable Engineering
    • Sustainable Manufacturing
    • Use & Conservation
    Additional Research:
    Hydrogen Transport/Storage; Biofuels; ClIMaTe/Environment; Electric Vehicles; System Design & Optimization; Energy and Materials Efficiency; Sustainability; Industrial Ecology; Technology Assessment; Science and Technology Policy

    IRI Connections: