Yajun Mei

Yajun Mei's profile picture
ymei3@gatech.edu

Yajun Mei is a Professor in the H. Milton Stewart School of Industrial and Systems Engineering at Georgia Tech.

Dr. Mei's research interests include change-point problems and sequential analysis in Mathematical Statistics; sensor networks and information theory in Engineering; as well as longitudinal data analysis, random effects models, and clinical trials in Biostatistics. 

He received a B.S. in Mathematics from Peking University in P.R. China, and a Ph.D. in Mathematics with a minor in Electrical Engineering from the California Institute of Technology. He has also worked as a postdoc in Biostatistics for two years in the Fred Hutchinson Cancer Research Center in Seattle, WA.

Phone
404-894-2334
Office
Groseclose 343
Research Focus Areas
Related Site

Harold Kim

Harold Kim's profile picture
harold.kim@physics.gatech.edu
Website
Professor
Phone
404-894-0080
Office
Boggs B-83
Additional Research
I am interested in understanding (i) how transcription factors find their targets on DNA and activate transcription despite the presence of nucleosomes and (ii) how structural details of trans-activators and cis-elements quantitatively fine-tune gene regulation at the cellular level. The Harold Kim Lab is an experimental biophysics group studying the biophysics of the genome in the School of Physics atGeorgia Institute ofTechnology.A meter-long DNA is tightly packaged into chromosomes inside a micron-wide nucleus of a cell. Therefore, the genetic information is difficult to locate and process. Despite this formidable challenge, cells constantly convert the genetic code into appropriate amounts of proteins in a timely manner based on external signals. This interesting phenomenon is at the core of our research.
University, College, and School/Department
Google Scholar
https://scholar.google.com/citations?user=pbKLBNsAAAAJ&hl=en&oi=ao
Related Site

Christine Heitsch

Christine Heitsch's profile picture
heitsch@math.gatech.edu

Christine Heitsch is Professor of Mathematics at Georgia Tech, with courtesy appointments in Biological Sciences and Computational Science & Engineering as well as an affiliation with the Petit Institute for Bioengineering & Bioscience.

She is also Director of the new Southeast Center for Mathematics and Biology (SCMB), an NSF-Simons MathBioSys Research Center, and finishing her tenure directing the GT Interdisciplinary Mathematics Preparation and Career Training (IMPACT) Postdoctoral Program.

Heitsch's research interests lie at the interface between discrete mathematics and molecular biology, specifically combinatorial problems "as motivated by" and "with applications to" fundamental biomedical questions like RNA folding.

Students interested in pursuing graduate studies in discrete mathematical biology can do so through a number of GT PhD programs including Bioinformatics or Quantitative Biosciences as well as Algorithms, Combinatorics, and Optimization (ACO), Computational Science & Engineering (CSE), and (of course) Mathematics.
 

Professor
Phone
404-894-4758
Office
Skiles 211B
Additional Research
Heitsch's research interests lie at the interface between discrete mathematics and molecular biology, specifically combinatorial problems "as motivated by" and "with applications to" fundamental biomedical questions like RNA folding.
Research Focus Areas
University, College, and School/Department
Related Site

Pamela Bhatti

Pamela Bhatti's profile picture
pamela.bhatti@ece.gatech.edu

Dr. Pamela Bhatti is Professor and Associate Chair for Strategic Initiatives and Innovation at the School of Electrical and Computer Engineering, Georgia Tech. Her research is dedicated to overcoming sensory loss in human hearing through focused neural stimulation, and novel implantable sensors. Dr. Bhatti also conducts research in cardiac imaging to assess and monitor cardiovascular disease. She received her B.S. in Bioengineering from the University of California, Berkeley (1989), her M.S. in Electrical Engineering from the University of Washington (1993), and her Ph.D. in Electrical Engineering from the University of Michigan, Ann Arbor (2006). In 2013, she earned an M.S. in Clinical Research from Emory University, and co-founded a startup company (Camerad Technologies) based on her research in detecting wrong-patient errors in radiology. Dr. Bhatti is the IEEE Journal of Translational Engineering in Health and Medicine, Editor-in-Chief; and, in 2017, received the Georgia Tech Class of 1934 Outstanding Interdisciplinary Activities Award.

Assistant Professor
Phone
404-894-7467
Office
MiRC 225
Additional Research

Biomedical sensors and subsystems including bioMEMS Neural prostheses: cochlear and vestibular Vestibular rehabilitation

Google Scholar
https://scholar.google.com/scholar?q=PT+Bhatti&btnG=&hl=en&as_sdt=0,11
Related Site

Christoph Fahrni

Christoph Fahrni's profile picture
fahrni@chemistry.gatech.edu
Website

Christoph Fahrni earned a master’s degree in chemistry from the Federal Institute of Technology (ETH, Switzerland) and a Ph.D. degree in chemistry from the University of Basel (Switzerland). After working as a postdoctoral fellow at Northwestern University (Evanston, IL), he joined the School of Chemistry and Biochemistry at the Georgia Institute of Technology in 1999.

Professor
Associate Chair for Graduate and Postdoctoral Programs
Phone
404-385-1164
Office
Petit Biotechnology Building, Office 3310
Additional Research
Metals In Biological Systems. Approximately one third of all known proteins contain metal ions as cofactors and serve a wide variety of functions, such as structure stabilization, catalysis, electron transfer reactions or complex tasks, including signal transduction and gene regulation. Numerous diseases such as haemochromatosis or Menkes disease were found to be related with a defect in metal metabolism. Research is concerned with development of metal specific fluorescent probes for the investigation of the intracellular chemistry of trace elements, the mechanistic study of metalloprotein catalyzed reactions with unusual coordination geometries as well as the development of protein-based, semisynthetic organometallic catalysts in aqueous solution. Fluorescence Probes and Chelators for the Investigation of Intracellular Storage, Trafficking, and Homeostasis of Trace Elements. Until recently, little was known about how eukaryotic cells take up metal ions or regulate intracellular concentrations. Fluorescent chemosensors have been proven to be powerful and nondestructive tools for the study of intracellular metal ion distributions and have provided a wealth of information, including control of muscle contraction, nerve cell communication, hormone secretion, and immune cell activation. Research is concerned with the development of highly specific fluorescent probes for the detailed mechanistic investigation of copper storage and trafficking. Distribution and changes of intracellular copper concentration can be followed in vivo using fluorescence microscopy. Various combinatorial fluorophore libraries are being synthesized, which subsequently are screened for copper binding selectivity. Bioorganometallic Catalysis with Peptide and Protein Ligands. The distribution of metal ions in sea water can be directly correlated with their abundance in biological systems. Consequently, the platinum metals palladium, rhodium, iridium and platinum are not found in any of the natural occurring metalloproteins. Nevertheless, these cations are excellent catalysts for a wide variety of organometallic reactions. Research is focused on combining the rich chemistry of platinum metals with the advantage of proteins to catalyze reactions with high regio- and stereo-selectivity. Novel bioorganometallic catalysts are being developed via redesign of structurally well characterized proteins.
Research Focus Areas
Google Scholar
http://scholar.google.com/scholar?as_q=christoph+j+fahrni&num=10&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=cj+fahrni&as_publication=&as_ylo=&as_yhi=&as_sdt=1&as_subj=chm&as_sdts=11&btnG=Search+Scholar&hl=en
LinkedIn Related Site

Ronghu Wu

Ronghu Wu's profile picture
ronghu.wu@chemistry.gatech.edu
Website

Research in the Wu lab is mainly focused on mass spectrometry (MS)-based proteomics. They are developing innovative methods to globally identify and quantify proteins and their post-translational modifications (PTMs), including glycosylation and phosphorylation, and applying them for biomedical research. Protein PTMs plays essential roles in biological systems, and aberrant protein expression and modification are directly related to various human diseases, including cystic fibrosis, cancer and infectious diseases. Novel analytical methods will profoundly advance our understanding of protein function, which will lead to the identification of proteins or modified proteins as effective drug targets and the discovery of biomarkers for early disease detection.

Associate Professor
Phone
404-385-1515
Office
EBB 4011
Google Scholar
https://scholar.google.com/citations?user=sL3sQmwAAAAJ&hl=en&oi=ao
Related Site

Adegboyega “Yomi” Oyelere

Adegboyega “Yomi” Oyelere's profile picture
adegboyega.oyelere@chemistry.gatech.edu
Website

Dr. Adegboyega “Yomi” Oyelere has received PhD from Brown University in 1998. Currently, he works as an associate professor in the School of Chemistry and Biochemistry at the Georgia Institute of Technology.

Associate Professor
Phone
404-894-4047
Office
Petit Biotechnology Building, Office 3305
Additional Research
Bioorganic Chemistry, Biochemistry and Drug Design, RNA-Small Molecule Interaction, Targeted Histone Deacetylase (HDAC) Inhibition, Design and Synthesis of Novel Bioconjugates for Molecular Delivery Applications
Google Scholar
http://scholar.google.com/scholar?q=adegboyega+k+oyelere&hl=en&btnG=Search&as_sdt=80001&as_sdtp=on
Related Site

Lily Cheung

Lily Cheung's profile picture
lily.cheung@gatech.edu
Website

Lily Cheung got her research start as a sophomore at Rutgers University, where she graduated Summa Cum Laude with a B.S. in Chemical Engineering in 2008. She then earned her Ph.D. in Chemical Engineering from Princeton University in 2013. Under the supervision of Stanislav Shvartsman, she characterized gene regulatory networks controlling the development of the model organism Drosophila melanogaster, using a combination of molecular biology, genetics, and reaction-diffusion modeling.

During her postdoctoral training with Wolf Frommer at the Carnegie Institution for Science, she designed biomolecular sensors to quantify sugar transport in plants. Her current interests include the use of high-throughput quantitative techniques and mathematical modeling to advance our understanding of how metabolic and gene regulatory networks interact to control plant growth.

Lily is the recipient of a NSF NPGI Postdoctoral Fellowship in Biology, a NSF CAREER Award, and a Human Frontier Science Program Early Career Award.

Assistant Professor
Phone
404-894-2826
Office
ES&T L1230
Additional Research

Engineering of genetically encoded biosensors Quantitative fluorescence microscopy and image analysis Computational models of gene regulatory networks Transcriptional regulation and developmental biology of plants The past fifteen years has seen dramatic advancements in genome sequencing and editing. The cost of sequencing a genome has decreased by two orders of magnitude, giving rise to new systems-level approaches to biology research that aim to understand life as an emerging property of all the molecular interactions in an organism. At the same time, technologies that allow site-specific modifications of the genome are enabling researchers to manipulate multicellular organisms in unprecedented ways. From reductionist approaches to systems biology, and from conventional plant breeding to synthetic biology, the future of plant biology research relies on the adoption of computational methods to analyze experimental data and develop predictive models. In biomedicine, mathematical models are already revolutionizing drug discovery; in agriculture, they have the potential to generate more efficient, faster growing crop varieties. The goal of the Cheung lab is to bring quantitative techniques and mathematical modeling to plants in order to gain systems-level insight into their physiology and development - particularly to understanding how metabolic and gene regulatory networks interact to control homeostasis and growth.

Research Focus Areas
Related Site

John Blazeck

John Blazeck's profile picture
john.blazeck@chbe.gatech.edu
Website

The Blazeck Lab tackles challenges at the interface of immunology, engineering, and metabolism to improve human health. We utilize our expertise in cellular and protein engineering to control biological function and to develop novel therapies to fight disease.

Synthetic Immune Systems

Our immune system uses very complex processes to make exquisitely specific receptors that recognize disease causing agents, and much of our ability to fight diseases is contingent upon the development of a diverse repertoire of immune receptors. Many questions remain unanswered about these immune receptors. For instance, at a population level, can we characterize the millions of receptors each person makes? And then further determine which of these millions of receptors is most important towards recognizing and targeting a pathogen? And can we control the generation of immune receptors to have desired properties? We are striving to answer these questions by harnessing our immune system’s power in a synthetic setting to improve understanding and treatment options for numerous diseases, while developing applications for vaccine design, personalized medicine, and enzyme engineering.

Engineering Cellular Therapies

Immunotherapies are treatments designed to modulate the immune response that have shown astounding clinical potential, yet there are no current treatments with guaranteed success. We are working to engineer cellular systems with controllable, enhanced, and non-native functions that improve their impact and capability. By developing high throughput technologies to interrogate immune function, we hope to translate our findings into improvements in the next generation of cellular therapeutics. 

Developing Proteins that Fight Cancer and Control Metabolism

It is widely accepted that cancer cells have a significantly altered genomic and metabolic makeup relative to normal cells, but how can we best target these differences? By combining our expertise in metabolism and therapeutic protein engineering, are working to engineer proteins to directly target and fight cancer. For instance, certain enzymes can control the metabolic environment around tumors to inhibit their growth or to stimulate a native anti-cancer immune response. We utilize directed evolution approaches to optimize protein function and efficacy.

Assistant Professor
Related Site

F. Levent Degertekin

F. Levent Degertekin's profile picture
levent.degertekin@me.gatech.edu

Dr. F. Levent Degertekin received his B.S. degree in 1989 from M.E.T.U, Turkey; M.S. degree in 1991 from Bilkent University, Turkey; and his Ph.D. in 1997 from Stanford University, California, all in electrical engineering. His M.S. thesis was on acoustic microscopy, and his Ph.D. work was on ultrasonic sensors for semiconductor processing, and wave propagation in layered media. He worked as an engineering research associate at the Ginzton Laboratory at Stanford University from 1997 until joining the George W. Woodruff School of Mechanical Engineering at Georgia Tech in spring 2000. 

He has published over 150 papers in international journals and conference proceedings. He holds 20 U.S. patents, and received an NSF CAREER Award for his work on atomic force microscopy in 2004. Dr. Degertekin served on the editorial board of the IEEE Sensors Journal, and on the technical program committees of several international conferences on ultrasonics, sensors, and micro-opto-mechanical systems (MOEMS).

Professor
George W. Woodruff Chair in Mechanical Systems
Phone
404-385-1357
Office
Love 311B
Additional Research

Degertekin's research focuses on understanding of physical phenomena in acoustics and optics, and utilizing this knowledge creatively in the form of microfabricated devices. The research interests span several fields including atomic force microscopy (AFM), micromachined opto-acoustic devices, ultrasound imaging, bioanalytical instrumentation, and optical metrology. Dr. Degertekin's research group, in collaboration with an array of collaborators, has developed innovative devices for applications such as nanoscale material characterization and fast imaging, hearing aid microphones, intravascular imaging arrays for cardiology, bioanalytical mass spectrometry, and microscale parallel interferometers for metrology.

Research Focus Areas
Google Scholar
https://scholar.google.com/citations?user=-WVPmUkAAAAJ&hl=en&oi=sra
LinkedIn Related Site