Eva Dyer

Eva Dyer

Eva Dyer

Assistant Professor

Dyer’s research interests lie at the intersection of machine learning, optimization, and neuroscience. Her lab develops computational methods for discovering principles that govern the organization and structure of the brain, as well as methods for integrating multi-modal datasets to reveal the link between neural structure and function.

evadyer@gatech.edu

404-894-4738

Office Location:
UAW 3108

Website

  • Related Site
  • Google Scholar

    Research Focus Areas:
    • AI
    • Neuroscience
    Additional Research:

    Eva Dyer’s research combines machine learning and neuroscience to understand the brain, its function, and how neural circuits are shaped by disease. Her lab, the Neural Data Science (NerDS) Lab, develops new tools and frameworks for interpreting complex neuroscience datasets and building machine intelligence architectures inspired by the brain. Through a synergistic combination of methods and insights from both fields, Dr. Dyer aims to advance the understanding of neural computation and develop new abstractions of biological organization and function that can be used to create more flexible AI systems.


    IRI Connections:

    Christopher Wiese

    Christopher Wiese

    Christopher Wiese

    Assistant Professor

    My research focuses on three major areas: (a) understanding and improving worker well-being, (b) temporal dynamics in team contexts, and (c) research methods. Collectively, my research seeks to improve our understanding of optimal human functioning more generally, across time, and within specific contexts (e.g., organizational, teams).

    ChrisWiese@gatech.edu

    Website

    University, College, and School/Department

    IRI Connections:

    Young Jang

    Young Jang

    Young Jang

    Assistant Professor

    Dr. Jang’s lab uses multi-disciplinary approaches to study muscle stem cell biology and develops bioactive stem cell delivery vehicles for use in regenerative medicine. Dr. Jang’s lab studies both basic aspects of muscle stem cell biology, especially systemic/metabolic regulations of stem cell and stem cell niche, as well as more translational aspects of muscle stem cell and mesenchymal stem cell for use in therapeutic approaches for musculoskeletal aging, neuromuscular diseases, and traumatic injuries.

    young.jang@gatech.edu

    404-385-3058

    Office Location:
    Petit Biotechnology Building, Office 3304 & AP 1231

    Lab Website

  • https://biosci.gatech.edu/people/young-jang
  • Google Scholar

    Research Focus Areas:
    • Cell Manufacturing
    • Neuroscience
    • Regenerative Medicine
    Additional Research:
    Dr. Jang's lab uses multi-disciplinary approaches to study muscle stem cell biology and develops bioactive stem cell delivery vehicles for use in regenerative medicine. Dr. Jang's lab studies both basic aspects of muscle stem cell biology, especially systemic/metabolic regulations of stem cell and stem cell niche, as well as more translational aspects of muscle stem cell and mesenchymal stem cell for use in therapeutic approaches for musculoskeletal aging, neuromuscular diseases, and traumatic injuries. 1. Metabolic regulation of stem cell function 2. Systemic regulation of muscle homeostasis 3. Engineering muscle stem cell niche for regenerative medicine

    IRI Connections:

    Terry Snell

    Terry Snell

    Terry Snell

    Professor Emeritus

    Terry Snell, an Emeritus Professor in the School of Biological Sciences, is a member of the Parker H. Petit Institute for Bioengineering and Bioscience.

    terry.snell@biosci.gatech.edu

    404-385-4498

    Office Location:
    Cherry Emerson 201

  • http://biosciences.gatech.edu/people/terry-snell
  • Google Scholar

    Research Focus Areas:
    • Molecular Evolution
    • Systems Biology
    Additional Research:
    Chemical ecology of zooplankton; mate recognition; evolutionary ecology; aquatic toxicology; gene expression in response to environmental stress; aquaculture. 

    IRI Connections:

    Kirill Lobachev

    Kirill Lobachev

    Kirill Lobachev

    Associate Professor

    My laboratory investigates molecular mechanisms underlying eukaryotic genome stability. Chromosomal rearrangements create genetic variation that can have deleterious or advantageous consequences. Karyotypic abnormalities are a hallmark of many tumors and hereditary diseases in humans. Chromosome rearrangements can also be a part of the programmed genetic modifications during cellular differentiation and development. In addition, gross DNA rearrangements play a major role in the chromosome evolution of eukaryotic organisms. Therefore, elucidation of molecular mechanisms leading to chromosome instability is important for studying human pathology and also for our understanding of the fundamental processes that determine the architecture and dynamics of eukaryotic genomes. 

    My overall contribution to the field of genome instability has been the demonstration of the phenomenon that repeats often found in eukaryotic genomes are potent sources of genome instability. Specifically, I have been investigating one of the most fundamental and enigmatic processes as to how repetitive sequences that adopt non-canonical DNA secondary structures, such as hairpins and cruciforms, cause replication arrest, double-strand breaks, and gross chromosomal rearrangements. Using molecular biology approaches, we investigate the instability of secondary structure-forming repeats in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and human fibroblasts.

    kirill.lobachev@biology.gatech.edu

    404-385-6197

    Office Location:
    Petit Biotechnology Building, Office 2303

  • http://biosciences.gatech.edu/people/kirill-lobachev
  • Google Scholar

    Research Focus Areas:
    • Cancer Biology
    Additional Research:
    Using yeastSaccharomyces cerevisiaeas a model, my laboratory investigates molecular mechanisms underlying eukaryotic genome stability. Chromosomal rearrangements create genetic variation that can have deleterious or advantageous consequences. Karyotypic abnormalities are a hallmark of many tumors and hereditary diseases in humans. Chromosome rearrangements can also be a part of the programmed genetic modifications during cellular differentiation and development. In addition, gross DNA rearrangements play a major role in chromosome evolution of eukaryotic organisms. Therefore, elucidation of molecular mechanisms leading to chromosome instability is important for studying the human pathology and also for our understanding of the fundamental processes that determine the architecture and dynamics of eukaryotic genomes. Myoverall contributionto the field of genome instability has been the demonstration of the phenomenon that repeats often found in higher eukaryotic genomes including the human genome are potent sources of double-strand breaks (DSB) and gross chromosomal rearrangements (GCR). Specifically, my lab, is investigating how repetitive sequences that can adopt non-B DNA secondary structures pose a threat to chromosomal integrity dictated by their size and arrangement. Currently three sequence motifs are studied in my laboratory: inverted repeats; Friedreich's ataxia GAA/TTC trinucleotide repeats and G-quadruplex-forming tracts. We also are collaborating with Dr. Malkova lab, University of Iowa, to study one of the outcomes of the DSB formation at unstable repeats - break-induced replication.

    IRI Connections:

    Stanislav Emelianov

    Stanislav Emelianov

    Stanislav Emelianov

    Joseph M. Pettit Chair
    Georgia Research Alliance Eminent Scholar
    Professor

    Dr. Stanislav Emelianov is a Joseph M. Pettit Endowed Chair, Georgia Research Alliance Eminent Scholar, and Professor of Electrical & Computer Engineering and Biomedical Engineering at the Georgia Institute of Technology. He is also appointed at the Emory University School of Medicine, where he is affiliated with Winship Cancer Institute, Department of Radiology, and other clinical units. Furthermore, Dr. Emelianov is Director of the Ultrasound Imaging and Therapeutics Research Laboratory at the Georgia Institute of Technology focused on the translation of diagnostic imaging & therapeutic instrumentation, and nanobiotechnology for clinical applications. 

    Throughout his career, Dr. Emelianov has been devoted to the development of advanced imaging methods capable of detecting and diagnosing cancer and other pathologies, assisting treatment planning, and enhancing image-guided therapy and monitoring of the treatment outcome. He is specifically interested in intelligent biomedical imaging and sensing ranging from molecular imaging to small animal imaging to clinical applications. Furthermore, Dr. Emelianov develops approaches for image-guided molecular therapy and therapeutic applications of ultrasound and electromagnetic energy. Finally, nanobiotechnology plays a critical role in his research. In the course of his work, Dr. Emelianov has pioneered several ultrasound-based imaging techniques, including shear wave elasticity imaging and molecular photoacoustic imaging. Overall, projects in Dr. Emelianov's laboratory, which focuses on cancer and other diseases, range from molecular imaging to functional imaging and tissue differentiation, from drug delivery and release to image-guided surgery and intervention.

    stas@gatech.edu

    404-385-0373

    Office Location:
    MoSE 4100M

    Website

  • Related Site
  • Google Scholar

    University, College, and School/Department
    Research Focus Areas:
    • Cancer Biology
    • Drug Design, Development and Delivery
    Additional Research:
    Diagnostic imaging and patient-specific image-guided therapeutics including cancer imaging and diagnosis. Emelianov's research interests are in the areas of intelligent diagnostic imaging and patient-specific image-guided therapeutics including cancer imaging and diagnosis, the detection and treatment of atherosclerosis, the development of imaging and therapeutic nanoagents, guided drug delivery and controlled release, simultaneous anatomical, functional, cellular and molecular imaging, multi-modal imaging, and image-guided therapy.

    IRI Connections:

    Amit Reddi

    Amit Reddi

    Amit Reddi

    Associate Professor

    Metalloproteins constitute one of the largest classes of proteins in the proteome and are involved in virtually every metabolic and signaling pathway of consequence to human health and disease. Broadly speaking, the Reddi laboratory is interested in determining the cellular, molecular, and chemical mechanisms by which metalloproteins are activated by cells, and once activated, how they communicate with other biomolecules to promote normal metabolism and physiology, placing an emphasis on systems relevant to cancer, neurodegenerative disorders, and infectious diseases. Current projects in the lab are focused on elucidating heme trafficking pathways and the role of Cu/Zn Superoxide Dismutase (SOD1) in redox signaling. Prospective students will get broad training in disciplines that span modern biochemistry, bioinorganic chemistry, biophysics, chemical biology, molecular genetics, and cell biology.      

    amit.reddi@chemistry.gatech.edu

    404-385-1428

    Office Location:
    Petit Biotechnology Building, Office 3313

    Google Scholar

    Research Focus Areas:
    • Cancer Biology
    • Chemical Biology
    • Systems Biology
    Additional Research:
    Metalloproteins constitute one of the largest classes of proteins in the proteome and are involved in virtually every metabolic and signaling pathway of consequence to human health and disease. Broadly speaking, the Reddi laboratory is interested in determining the cellular, molecular, and chemical mechanisms by which metalloproteins are activated by cells, and once activated, how they communicate with other biomolecules to promote normal metabolism and physiology, placing an emphasis on systems relevant to cancer, neurodegenerative disorders, and infectious diseases. Current projects in the lab are focused on elucidating heme trafficking pathways and the role of Cu/Zn Superoxide Dismutase (SOD1) in redox signaling. Prospective students will get broad training in disciplines that span modern biochemistry, bioinorganic chemistry, biophysics, chemical biology, molecular genetics, and cell biology.

    IRI Connections:

    Neha Garg

    Neha Garg

    Neha Garg

    Associate Professor

    Professor Garg received a Bachelors in Engineering in Biotechnology from University Institute of Technology and Masters in Science from Indian Institute of Technology, Delhi. During her masters, she spent several months in Berlin, Germany while conducting research with Professor Marion Ansorge Schumacher at Technical University, Berlin as an DAAD Fellow. Garg obtained her Ph.D. in 2013 from the University of Illinois, Urbana Champaign under the direction of Professor Wilfred A. van der Donk and Professor Satish Nair. She then joined Professor Pieter C Dorrestein's research laboratory as a postdoctoral research associate at the University of California, San Diego. Garg joined the faculty at GeorgiaTech in 2017.

    neha.garg@chemistry.gatech.edu

    404-385-5677

    Office Location:
    EBB 4016

    Website

  • Related Site
  • Google Scholar

    Additional Research:
    Eukaryotes, including humans, are 'petri dishes', hosting an abundant and a rich prokaryotic 'microbiome'. The Garg Lab aims to understand the molecular interactions between a eukaryotic host and its microbiome, and how these molecular interactions dictate human health and disease. Using a concoction of innovative tools including bioinformatics, clinical microbiology, mass spectrometry, DNA sequencing, and mass spectrometry-based 2D and 3D spatial imaging, we aim to delineate specific molecules that modulate the dynamics of microbial involvement in our response to genetic and environmental triggers of disease. We characterize the biosynthesis of these small molecule natural products to innovate developement of new therapeutics.

    IRI Connections:

    Roman Mezencev

    Roman Mezencev

    Roman Mezencev

    Adjunct Associate Professor, Biological Sciences

    Roman Mezencev's research uses genomics and functional genomics data, such as transcriptomics, methylomics, miRNA-omics, proteomics, and metabolomics, to identify distinct molecular subtypes of cancer and predict their sensitivity to traditional and new targeted anticancer agents. A more precise classification of cancer and the identification of new molecular subtypes can improve therapy decision-making and provide more accurate prognostication for cancer patients. 

    In addition, he utilizes functional genomics to determine the potential of specific chemicals to cause cancer. Analyzing omics data also allows for identifying the carcinogenic mode of action of these chemicals and deriving their carcinogenic potency, which is crucial for human health risk assessment and public health considerations. 

    Furthermore, cancer also has a unique molecular and epidemiological association with neurodegenerative diseases like Alzheimer's disease (AD), which is currently the seventh leading cause of death in the U.S. Mezencev's research explores these connections to identify shared risk factors and molecular mechanisms involved in the development of cancer and AD for a better understanding of these complex diseases and cross-pollination between anticancer and anti-AD drug development.

    roman.mezencev@biosci.gatech.edu

    404-824-3700

    Google Scholar

    Additional Research:
    Cancer Biology and Carcinogenesis, Toxicogenomics, Cancer Drug Resistance, Protein Misfolding Diseases, Molecular Pathology; Epidemiology and Public Health

    IRI Connections: