Giri Krishnan


Giri Krishnan

Associate Director, Center for Artificial Intelligence in Science and Engineering (ARTISAN)
Principal Research Scientist

Dr Krishnan is research professor in the Georgia Tech’s Interdisciplinary Research Institute, Institute for Data Engineering and Science, School of Computational Science and Engineering, College of Computing. He is an associate director of the Center for AI in Science and Engineering. His current interest is in developing AI methods for computational science problems across many domains. He is a computational neuroscientist by training, with past work spanning across a wide range of computational modeling and AI methods. His group's current focus is on generative methods for computational workflow, neural approaches for accelerating compute intensive problems and applying interpretable methods to scientific AI for advancing scientific understanding.

Prior to joining Georgia Tech, he was research scientist at UC San Diego and his research involved developing large-scale modeling of the brain to study sleep, memory and learning. In addition, he has contributed towards neuro-inspired AI and neuro-symbolic approaches. He is broadly interested in the emergence of intelligent behavior from neural computations in the brain and AI systems. 

Dr Krishnan has more than 50 publications and his research has been supported by multiple grants from NIH and NSF. He is passionate about open-science and reproducible science and strongly believes that progress in science requires reproducibility.

giri@gatech.edu

404.894.2132

Office Location:
CODA Building

Google Scholar

Research Focus Areas:
  • AI
  • Geosystems
  • Neuroscience
Additional Research:

AI : Deep learning, Neuro-symbolic ApproachesGeosciences.Molecular DynamicsNeuroscience : Theoretical and computational modeling


IRI Connections:

Ratan Murty

Ratan Murty

Ratan Murty

Assistant Professor

Ratan obtained his PhD in Neuroscience from the Indian Institute of Science, Bangalore (India) with Prof. SP Arun and completed his postdoctoral research at the Massachusetts Institute of Technology with Profs. Nancy Kanwisher and James J DiCarlo.​ He leads the Murty Vision, Cognition, and Computation Lab at Georgia Tech.

Ratan's research goal is to understand the neural codes and algorithms that support human vision.

ratan.murty@psych.gatech.edu

Personal Website

  • School of Psychology Profile
  • Google Scholar

    Research Focus Areas:
    • Bioinformatics
    • Neuroscience
    Additional Research:
    NeurobiologyBiological VisionNeural Modeling

    IRI Connections:

    Pan Li

    Pan Li

    Pan Li

    Assistant Professor

    Pan Li joined Georgia Tech in 2023 Spring. Before that, Pan Li worked at the Purdue Computer Science Department as an assistant professor from the 2020 fall to the 2023 Spring. Before joining Purdue, Pan worked as a postdoc at Stanford Computer Science Department from 2019 to 2020. Pan did his Ph.D. in Electrical and Computer Engineering at the University of Illinois Urbana-Champaign. Pan Li has got the NSF CAREER award, the Best Paper award from the Learning on Graph Conference, Sony Faculty Innovation Award, JPMorgan Faculty Award.

    panli@gatech.edu

    Office Location:
    CODA Number S1219

    Personal Website

  • ECE Profile Page
  • Google Scholar

    Research Focus Areas:
    • AI
    • Machine Learning
    Additional Research:
    • Artificial Intelligence
    • Large-Scale Graphs
    • Machine Learning
    • Trustworthy AI for Physics

    IRI Connections:

    Bo Dai

    Bo Dai

    Bo Dai

    Assistant Professor

    Bo Dai is a tenure-track assistant professor at Georgia Tech's School of Computational Science and Engineering. Prior to joining academia, he worked as a Staff Research Scientist at Google Brain. Bo Dai completed his Ph.D. in the School of Computational Science and Engineering at Georgia Tech, where he worked from 2013 to 2018 with Professor Le Song. His research focuses on developing principled and practical machine learning techniques for real-world applications. Bo Dai has received numerous awards for his work, including the best paper award at AISTATS 2016. He regularly serves as a (senior) area chair at major AI/ML conferences, such as ICML, NeurIPS, AISTATS, and ICLR.

    bodai@cc.gatech.edu

    Office Location:
    CODA E1342A, 756 W Peachtree St NW, Atlanta, GA 30308

    Personal Website

  • CSE Profile Page
  • Google Scholar

    Research Focus Areas:
    • AI
    • Machine Learning
    Additional Research:

    Reinforcement Learning Data-Driven Decision Making Embodied AI


    IRI Connections:

    Nabil Imam

    Nabil Imam

    Nabil Imam

    Assistant Professor

    Nabil Imam works on topics in machine learning and theoretical neuroscience with the goal of understanding general principles of neural coding and computation, and their technological applications.

    Prof. Imam joined Georgia Tech faculty in January 2022.

    nimam6@gatech.edu

    Personal Website

  • CSE Profile Page
  • Google Scholar

    Research Focus Areas:
    • Machine Learning
    • Neuroscience
    Additional Research:

    Computational Neuroscience Neural Coding and Computation


    IRI Connections:

    Suresh Marru

    Suresh Marru

    Suresh Marru

    Director, Georgia Tech Center for Artificial Intelligence in Science and Engineering (ARTISAN)
    Research Professor, Institute for Data Engineering and Science (IDEaS)

    Suresh Marru is a research professor dedicated to advancing science and engineering through AI and cyberinfrastructure. Over the past two decades, he has focused on accelerating and democratizing computational science. His work includes the development of science gateways and the pioneering of the Apache Airavata distributed systems framework.

    In his current role as the Director of Georgia Tech's ARTISAN Center, his team is at the forefront of pioneering efforts to integrate AI into diverse scientific domains. His group is dedicated to bridging the gap between theory, experimentation, and computation by fostering open-source integration frameworks. These frameworks automate research processes, optimize complex models, and integrate disparate scientific data with simulation engines.

    Collaboration is at the heart of Suresh’s ethos. He has had the privilege of working alongside brilliant scientists and technologists, contributing to groundbreaking research in domains such as geosciences, neuroscience, and molecular dynamics. These collaborations have not only accelerated scientific discovery but have also offered valuable insights into the potential of AI in scientific innovation.

    Beyond his professional endeavors, Suresh is deeply passionate about open science and open-source software. He also believes in building synergies between academia and industry. He has played an instrumental role in a series of tech startups. Currently, he serves as the Chief Technology Officer at Folia, a company dedicated to unleashing the power of annotations.

    smarru@gatech.edu

    405.816.1686

    Office Location:
    CODA 12th Floor | #1217

    Personal Website

    Google Scholar

    Research Focus Areas:
    • AI
    • Cyber Technology
    • Cyber-Physical Systems
    Additional Research:

    Atmospheric SciencesComputer ModelingCyberinfrastructureData Fusion and IntegrationOpen Science Integration FrameworksScience Gateway Frameworks


    IRI Connections:

    Alexander Lerch

    Alexander Lerch

    Alexander Lerch

    Associate Dean of Research and Creative Practice
    Associate Professor

    Alexander Lerch is an Associate Professor at the School of Music, Georgia Institute of Technology. He received his "Diplom-Ingenieur'' (EE) and his PhD (Audio Communications) from Technical University Berlin. Lerch joined Georgia Tech in 2013 and teaches classes on music signal processing, computational music analysis, audio technology, and audio software engineering. Before he joined Georgia Tech, Lerch was Head of Research at his company zplane.development, an industry leader in music technology licensing. zplane technology includes algorithms such as time-stretching and automatic key detection and is used by millions of musicians and producers world-wide.       

    Lerch's research focuses on teaching computers to listen to and comprehend music. His research field, Music Information Retrieval (MIR), positions him at the intersection of signal processing, machine learning, music psychology, and systematic musicology. His Music Informatics Group (http://www.musicinformatics.gatech.edu) creates artificially intelligent software for music generation, production, and consumption and generates new insights into music and its performance.

    Lerch authored more than 40 peer-reviewed journal and conference papers. His text book "An Introduction to Audio Content Analysis" (IEEE/Wiley 2012) and the accompanying online materials at www.AudioContentAnalysis.org helped define educational practice in the field.

    alexander.lerch@gatech.edu

    Website

    University, College, and School/Department
    Research Focus Areas:
    • AI
    Additional Research:
    • Artificial Intelligence for Music

    IRI Connections:

    Manoj Bhasin

    Manoj Bhasin

    Manoj Bhasin

    Associate Professor

    Dr. Bhasin's laboratory has developed strategies for analysis of transcriptome, epigenome, and proteomics data to perform multi-scale modeling of interaction among different cells molecular level and to identify novel biomarkers. He and his team are currently focusing on developing novel single-cell omics approaches to understand disease heterogeneity and the impact of treatments at single-cell resolution. He is involved in developing approaches for the analysis of multi-dimensional single-cell data by developing innovative approaches for single-cell sparsity, batch correction, annotation, and integration. Using these approaches, his group is working toward understanding: 1. Understanding heterogeneity and relapse mechanisms in pediatric hematological malignancies 2. Understanding heterogeneity and progression in multiple myeloma. 3. Development of molecular diagnostics platforms for cancer diagnosis and prognosis 4. Identification of biomarkers for early detection of pancreatic cancer, glioblastoma, and colon cancer 5. Artificial intelligence-based histopathology and radiology cancer image analysis approaches 6. Single-cell Atlas for Pediatric Cancers Additionally, our group is also developing Biomarkers associated with impaired healing of Diabetic Foot Ulcers using single-cell profiling and deep learning-driven wound image analysis. We are working collaboratively to develop innovative genomics and clinical data-driven drug repurposing approaches.

    manoj.bhasin@bme.gatech.edu

    Office Location:
    101 Woodruff Circle, 4th Floor East

    Research Lab Page

  • BME Profile Page
  • Google Scholar

    Research Focus Areas:
    • Bioengineering
    • Bioinformatics
    • Cancer Immunotherapy
    • Cell Manufacturing
    • Computational Genomics
    • Diagnostics
    • Immunoengineering
    Additional Research:
    Approaches for the analysis of multi-dimensional single-cell data

    IRI Connections:

    Juba Ziani

    Juba Ziani

    Juba Ziani

    Assistant Professor

    Juba Ziani is an Assistant Professor in the H. Milton Stewart School of Industrial and Systems Engineering. Prior to this, Juba was a Warren Center Postdoctoral Fellow at the University of Pennsylvania, hosted by Sampath Kannan, Michael Kearns, Aaron Roth, and Rakesh Vohra. Juba completed his Phd at Caltech in the Computing and Mathematical Sciences department, where he was advised by Katrina Ligett and Adam Wierman.

    Juba studies the optimization, game theoretic, economic, ethical, and societal challenges that arise from transactions and interactions involving data. In particular, his research focuses on the design of markets for data, on data privacy with a focus on "differential privacy", on fairness in machine learning and decision-making, and on strategic considerations in machine learning.

    jziani3@gatech.edu

    Office Location:
    Room 343 | Groseclose | 765 Ferst Dr NW | Atlanta, GA

    ISyE Profile Page

  • Personal Webpage
  • Google Scholar

    Research Focus Areas:
    • Big Data
    • Machine Learning
    • Security and Privacy of AI
    Additional Research:

    Game Theory Mechanism Design Markets for Data Differential Privacy Ethics in Machine Learning Online Learning


    IRI Connections:

    Yunan Luo

    Yunan Luo

    Yunan Luo

    Assistant Professor, Computational Science and Engineering

    I am an Assistant Professor in the School of Computational Science and Engineering (CSE), Georgia Institute of Technology since January 2022. I received my PhD from the Department of Computer Science at the University of Illinois Urbana-Champaign, advised by Prof. Jian Peng. Prior to that, I received my bachelor’s degree in Computer Science from Yao Class at Tsinghua University in 2016.

    I am broadly interested in computational biology and machine learning, with a focus on developing AI and data science methods to reveals core scientific insights into biology and medicine. Recent interests include deep learning, transfer learning, sequence and graph representation learning, network and system biology, functional genomics, cancer genomics, drug repositioning and discovery, and AI-guided biological design and discovery.

    yunan@gatech.edu

    CoC Faculty Profile Page

    Google Scholar

    Research Focus Areas:
    • Bioengineering
    • Bioinformatics
    • Biomaterials
    • Cancer Biology
    • Computational Genomics
    • Drug Design, Development and Delivery
    • Healthcare
    • Machine Learning
    Additional Research:
    • Artificial Intelligence
    • Bioengineering
    • Bioinformatics
    • Biomaterials
    • Cancer Biology
    • Drug Discovery
    • Machine Learning
    • Protein Engineering

    IRI Connections: