Alfred H. Merrill

Alfred H. Merrill

Alfred Merrill

Professor
Smithgall Chair in Molecular Cell Biology

Throughout my career, my laboratory has studied sphingolipids, a category of lipids that are important in cell structure, signal transduction and cell-cell communication. For more information about what we found, please refer to the Google Scholar or PubMed links below. 

As an Emeritus Professor, I am working on a project that has interested me for a long time--the fact that the active agent in the venom of the brown recluse spider is a sphingomyelinase D that produces a novel product, ceramide 1,3-cyclic phosphate. This activity has also been found in other spiders, bacteria and fungi. With the help of collaborators, I hope to learn more about the organisms that produce and degrade this novel sphingolipid, and possibly find ways to reduce the injury caused by the enzyme when humans encounter it in the environment.

al.merrill@biology.gatech.edu

404-385-2842

Office Location:
Petit Biotechnology Building, Office 3309

  • http://www.biology.gatech.edu/people/al-merrill
  • Google Scholar

    Research Focus Areas:
    • Cancer Biology
    • Drug Design, Development and Delivery
    • Molecular Evolution
    Additional Research:
    My laboratory studies a category of lipids, termed sphingolipids, that are important in cell structure, cell-cell communication and signal transduction. This research concerns both complex sphingolipids (sphingomyelins and glycosphingolipids) and the lipid backbones (ceramide, sphingosine, sphingosine 1-phosphate and others) that regulate diverse cell behaviors, including growth, differentiation, autophagy and programmed cell death. The major tool that we use to identify and quantify these compounds is tandem mass spectrometry, which we employ in combination with liquid chromatography for "lipidomic" analysis and in other mass spectrometry platforms (e.g., MALDI) for "tissue imaging" mass spectrometry. To assist interpretation of the mass spectrometry results, and to predict where interesting changes in sphingolipid metabolism might occur, we use tools for visualization of gene expression data in a pathway context (e.g., a "SphingoMAP"). These methods are used to characterize how sphingolipids are made, act, and turned over under both normal conditions and diseases where sphingolipids are involved, such as cancer, and where disruption of these pathways can cause disease, as occurs upon consumption of fumonisins. Since sphingolipids are also components of food, we determine how dietary sphingolipids are digested and taken up, and become part of the body's "sphingolipidome."

    IRI Connections:

    Lewis Wheaton

    Lewis Wheaton

    Lewis Wheaton

    Associate Professor
    Adjunct Associate Professor, Department of Rehabilitation Medicine, Emory University

    Dr. Lewis A. Wheaton received his Ph.D. in Neuroscience and Cognitive Sciences from the University of Maryland, College Park in 2005. He was a fellow at the National Institutes of Health (Medical Neurology Branch, 2001-2005) studying neural function and recovery of motor control after stroke. In mid-2005 he was awarded a post-doctoral fellowship at the Baltimore Veterans Affairs Medical Center (Maryland) where he performed neuroscience research in aging and stroke motor control in Veterans.

    In 2008, Dr. Wheaton joined the School of Applied Physiology at Georgia Tech as an Assistant Professor. He became tenured in 2014 and is currently an Associate Professor in Biological Sciences. Dr. Wheaton is the Director of the Cognitive Motor Control Laboratory at Georgia Tech, engaged in over $1 million in state and federal research funding focused on understanding aspects of human motor control rehabilitation in aging, stroke and amputation. His lab has employed numerous high school, undergraduate, graduate, and post-doctoral fellows. He is the course director for 4 courses in the School of Biological Sciences (Human Neuroimaging, Movement Disorders, Human Neuroanatomy, and the History of Neuroscience). He has Chaired/Co-Chaired 3 international conferences focused on motor control research and clinical outcomes, obtaining funding by federal and private sources. His research has yielded several manuscript publications in the field of motor control neuroscience, several focused expert reviews, and numerous conference presentations both in the US and abroad.

    Dr. Wheaton is also an adjunct Associate Professor in the Department of Rehabilitation at Emory School of Medicine and a Member of the Children’s Center for Neurosciences Research at the Emory Children’s Pediatric Research Center.

    Dr. Wheaton earned a BS (Biology) degree at Radford University (VA). He is an active parent volunteer at his children's schools and in the local community.

    lewis.wheaton@ap.gatech.edu

    404-385-2339

    Office Location:
    555 14th Street 1309E

    Website

  • http://biosci.gatech.edu/people/Lewis-Wheaton
  • News Story about C-PIES Appointment
  • Google Scholar

    Research Focus Areas:
    • Neuroscience
    Additional Research:
    The Cognitive Motor Control Laboratory seeks to understand neurophysiology guiding skillful human-object interactions in upper extremity motor control. We use neuroimaging to identify anatomical and physiological circuits in humans that guide successful skilled behavior. Our clinical studies consider neural systems that can suffer injury or dysfunction related to deficits in skillful motor control, and how to utilize surrogate neural circuits in restorative motor therapies in stroke and upper limb amputation.

    IRI Connections:

    Simon Sponberg

    Simon Sponberg

    Simon Sponberg

    Dunn Family Associate Professor; Physics & Biological Sciences
    Director; Agile Systems Lab

    During his graduate work at UC, Berkeley, Simon sought to uncover general principles of animal locomotion that reveal control strategies underlying the remarkable stability and maneuverability of movement in nature. His work has demonstrated the importance animals’ natural dynamics for maintaining stability in the absence of neural feedback. His research emphasizes the importance of placing neural control in the appropriate dynamical context using mathematical and physical models. He has collaborated with researchers at four other institutions to transfer these principles to the design of the next generation of bio-inspired legged robots. 

    Simon received his Ph.D. in Integrative Biology at UC, Berkeley and has been a Hertz Fellow since 2002. His work has led to fellowships and awards from the National Science Foundation, the University of California, the Woods Hole Marine Biological Institute, the American Physical Society, the Society of Integrative and Comparative Biology, and the International Association of Physics Students. He is also currently affiliated the new Center for Interdisciplinary Bio-Inspiration in Education and Research (CIBER) at Berkeley.

    simon.sponberg@physics.gatech.edu

    404.385.4053

    Office Location:
    Howey C205

    Agile Systems Lab

  • Physics Profile Page
  • Google Scholar

    University, College, and School/Department
    Research Focus Areas:
    • Neuroscience
    Additional Research:
    A central challenge for many organisms is the generation of stable, versatile locomotion through irregular, complex environments. Animals have evolved to negotiate almost every environment on this planet. To do this, animals'nervous systems acquire, process and act upon information. Yet their brains must operate through the mechanics of the body's sensors and actuators to both perceive and act upon the environment. Ourresearch investigates howphysics and physiologyenable locomoting animals to achieve the remarkable stability and maneuverability we see in biological systems. Conceptually, this demands combining neuroscience, muscle physiology, and biomechanics with an eye towards revealing mechanism and principle -- an integrative science of biological movement. This emerging field, termedneuromechanics, does for biology what mechatronics, the integration of electrical and mechanical system design, has done for engineering. Namely, it provides a mechanistic context for the electrical (neuro-) and physical (mechanical) determinants of movement in organisms. Weexplore how animals fly and run stably even in the face of repeated perturbations, how the multifuncationality of muscles arises from their physiological properties, and how the tiny brains of insects organize and execute movement.

    IRI Connections:

    Kostas Konstantinidis

    Kostas Konstantinidis

    Kostas Konstantinidis

    Professor

    Dr. Kostas Konstantinidis joined the Georgia Institute of Technology as an Assistant Professor in November 2007. He received his BS in Agriculture Sciences from the Aristotle University of Thessaloniki (Greece) in 1999. He continued his studies at the Center for Microbial Ecology at Michigan State University (East Lansing, MI) under the supervision of Prof. James M. Tiedje, where he obtained a PhD in 2004. His PhD studies were fully supported by the Bouyoukos Fellowship program and were devoted in advancing our understanding of the ecology and physiology of soil bacteria through the comparative analysis of their whole-genome sequences. This research resulted in a NSF-funded project to advance the species definition for prokaryotes, which also fostered a short post-doc position at the Center for Microbial Ecology. He then moved to MIT and the laboratory of Prof. Edward DeLong to get trained on innovating metagenomic techniques. His work at MIT provided important new insights into the complexity and function of oceanic microbial communities as well as how life is adapting in the deep and cold Oceans. His research interests are at the interface of genomics and computational biology in the context of microbial ecology with the overarching goal to broaden understanding of the genetic and metabolic potential of the microbial world. Advancing our knowledge on these issues is essential for a better understanding of the microbes that power, by and large, the biogeochemical cycles that sustain life on Earth and cause or control important diseases in humans and animals. He is a member of the American Society for Microbiology (ASM), the International Society for Microbial Ecology (ISME) and the Association of Environmental Engineering and Science Professors (AEESP). Konstantinidis held the Carlton S. Wilder Junior Professorship for five years and subsequently received the Maulding Faculty Fellowship in the School of Civil and Environmental Engineering.

    kostas.konstantinidis@gatech.edu

    404-385-3628

    Office Location:
    ES&T 3224

    Website

  • Related Site
  • Google Scholar

    Research Focus Areas:
    • Molecular Evolution
    • Systems Biology
    Additional Research:
    Environmental microbiology and genomics Computational approaches for studying the ecology and evolution of microorganisms Development of genomic and proteomic techniques to investigate and quantify in-situ important microbial-mediated processes Population and single-cell genomics Assessing the extent and value of biodiversity within natural assemblages of Bacteria and Archaea Biotechnological applications of microbial functional diversity Environmental relevance of microbial diseases Our laboratory focuses on the smallest organisms on the planet, the bacteria and the archaea, which represent the largest reservoir of biodiversity on Earth, drive the life-sustaining biogeochemical cycles, and cause or control diseases in humans, animals, and plants. Our scientific interests are at the interface of microbial ecology with engineering and computational biology. The long-term goals of our research is to broaden understanding of the genetic and metabolic diversity of the microorganisms and to explore this biodiversity for biotechnological applications.

    IRI Connections:

    Raquel Lieberman

    Raquel Lieberman

    Raquel Lieberman

    Professor

    Raquel Lieberman is the Sepcic-Pfeil Professor of Chemistry & Biochemistry at Georgia Tech. Her research program focuses on biophysical and structural characterization of proteins and the impact of disease-associated mutations on function or dysfunction (e.g. aggregation). Rooted in basic research, the long-term goal of her research program is to convert mechanistic discoveries into disease-modifying therapies.

    A major research project in her lab is investigations of glaucoma-associated herocilin, which has been funded by NIH since March 2011. Her lab has made major strides toward detailed molecular understanding of herocilin structure, function, and disease pathogenesis. They have divulged similarities between herocilin-associated glaucoma and other protein misfolding disorders, particularly aherloid diseases. Cumulatively, their work is leading to the first disease-modifying glaucoma therapeutic.

    Lieberman also has a track record in membrane enzymes dating back to her thesis work where she solved the first crystal structure of the copper-dependent particulate methane monooxygenase. During her postdoc she shifted focus to intramembrane aspartyl proteases (IAPs), particularly those involved in neurodegenerative disease like Alzheimer’s disease. In her independent lab she developed new proteomics-based assays to measure IAP proteolysis. The lab also collaborates with physicists at Oak Ridge National Labs to use neutron scattering to probe structure and lipids in solution. This work has been funded by NSF and NIH.

    She serves on the Executive Council of the Protein Society and as an academic editor for PLoS Biology. She also serves as co-PI of the Department of Education GAANN program in Biochemistry & Biophysics at Georgia Tech and on the advisory committees in a variety of capacities.

    raquel.lieberman@chemistry.gatech.edu

    404-385-3663

    Office Location:
    Petit Biotechnology Building, Office 1308

    Website

  • Related Site
  • Google Scholar

    Research Focus Areas:
    • Chemical Biology
    • Drug Design, Development and Delivery
    • Molecular, Cellular and Tissue Biomechanics
    Additional Research:
    The Lieberman research group focuses on biophysical and structural characterization of proteins involved in misfolding disorders. One major research project in the lab has been investigations of the glaucoma-associated myocilin protein. The lab has made major strides toward detailed molecular understanding of myocilin structure, function, and disease pathogenesis. Our research has clearly demonstrated similarities between myocilin glaucoma and other protein misfolding disorders, particularly amyloid diseases. The work has led to new efforts aimed at amelioratingthe misfolding phenotype using chemical biology approaches. Our second project involves the study of membrane-spanning proteolytic enzymes, which have been implicated disorders such as Alzheimer disease. Our group is tackling questions surrounding discrimination among and presentation of transmembrane substrates as well as the enzymatic details of peptide hydrolysis. In addition to the biochemical characterization of intramembrane aspartyl proteases, our group is developing new crystallographic tools to improve the likelihood of determining structures of similarly challenging membrane proteins more generally.

    IRI Connections:

    Marcus Cicerone

    Marcus Cicerone

    Marcus Cicerone

    Professor

    Marcus T Cicerone received his Ph.D. from the University of Wisconsin – Madison in 1994, under the direction of Mark Ediger. He spent three years at Johnson & Johnson Clinical Diagnostics, served as a visiting teaching professor at Brigham Young University for two years, and subsequently joined the National Institute of Standards and Technology in 2001, where he remained for 18 years, serving as a group leader and project leader. In January 2019 he joined the Georgia Institute of Technology as a Professor of Chemistry. 

    Professor Cicerone is a fellow of American Physical Society, and has received several awards for his efforts in coherent Raman-based biological imaging and for his work in dynamics of liquids and amorphous solids. These include a Johnson & Johnson Director’s Research Award, two Department of Commerce Bronze metals, the 2015 Washington Academy of Sciences Physical & Biological Sciences Award, and the 2017 Arthur S. Flemming Award.

    cicerone@gatech.edu

    404-894-2761

    Office Location:
    G026 MoSE

    Website

  • Related Site
  • Google Scholar

    Research Focus Areas:
    • Cell Manufacturing
    • Chemical Biology
    • Drug Design, Development and Delivery
    Additional Research:
    Professor Cicerone works on development and application of spectroscopic coherent Raman imaging approaches and on dynamics of amorphous condensed matter. In the coherent Raman imaging work, his group introduced broadband (spectroscopic) coherent anti-Stokes Raman scattering (BCARS) microscopy in 2004. Since then he and his group have remained at the forefront of this field, introducing improvements such as a time-domain Kramers-Kronig transform to deal with non-causal signals for retrieving the pure Raman spectrum directly from the raw BCARS signal. The results of that work and other instrument design innovations utilizing impulsive vibrational coherence generation resulted in recognition as one of the top 10 innovations in BioPhotonics for 2014. His group has logged many imaging firsts, including the first to obtain quantitative vibrational fingerprint spectra from mammalian cells using coherent Raman imaging, and the first to identify specific structural proteins from coherent Raman imaging.His work on dynamics of amorphous condensed matter focuses on the impact of picosecond timescale spatial and temporal heterogeneity in dynamics on transport and relaxation in liquids and glasses. In 2004, he used neutron scattering to show for the first time that chemical and physical stability of proteins encapsulated in glassy sugars could be predicted by the profile of ps-timescale dynamics. Since then, he has developed a framework for calculating transport and relaxation properties of liquids and glasses over 12 orders of magnitude in time, based solely on ps-timescale dynamics, and identified the molecular origin of a relaxation process (Johari-Goldstein process) that had been observed but remained enigmatic for 50 years. He has also developed benchtop approaches accessible to pharmaceutical labs for measuring the relevant dynamics, and developed a protein stability approach for drug delivery that encapsulates proteins in nanometer-sized droplets of vitrified sugar-based glass and makes them impervious to traditional processing steps, allowing retention of ~99% of protein function or titer after all processing steps. This approach has now been used successfully in large animal trials, and has also been shown to be effective for transdermal drug delivery due to the nanometer size of the encapsulation materials.

    IRI Connections:

    Nian Liu

    Nian Liu

    Nian Liu

    Assistant Professor

    Nian Liu began as an Assistant Professor at Georgia Institute of Technology, School of Chemical and Biomolecular Engineering in January 2017. He received his B.S. in 2009 from Fudan University (China), and Ph.D. in 2014 from Stanford University, where he worked with Prof. Yi Cui on the structure design for Si anodes for high-energy Li-ion batteries. In 2014-2016, he worked with Prof. Steven Chu at Stanford University as a postdoc, where he developed in situ optical microscopy to probe beam-sensitive battery reactions. Dr. Liu 's lab at Georgia Tech is broadly interested in the combination of nanomaterials, electrochemistry, and light microscopy for understanding and addressing the global energy challenges. Dr. Liu is the recipient of the Electrochemical Society (ECS) Daniel Cubicciotti Award (2014) and American Chemical Society (ACS) Division of Inorganic Chemistry Young Investigator Award (2015).

    nliu82@mail.gatech.edu

    404-894-5103

    Office Location:
    ES&T 1230

    Website

  • Related Site
  • Google Scholar

    Research Focus Areas:
    • Biomaterials
    • Hydrogen Production
    • Miniaturization & Integration
    • Nanomaterials
    • Optics & Photonics
    • Semiconductors
    Additional Research:
    Electronic Systems; Packaging and Components; Nanostructures & Materials; Optoelectronics Photonics & Phononics; Semiconductors; Materials & Processes

    IRI Connections:

    Shaheen Dewji, Ph.D.

    Shaheen Dewji, Ph.D.

    Shaheen Dewji

    Assistant Professor

    Shaheen Azim Dewji, Ph.D., (she/her/hers) is an Assistant Professor in the Nuclear & Radiological Engineering and Medical Physics Programs at the Georgia Institute of Technology, where she leads the Radiological Engineering, Detection, and Dosimetry (RED²) research group. Dewji joined Georgia Tech following three years as faculty at Texas A&M University in the Department of Nuclear Engineering, and as a Faculty Fellow of the Center for Nuclear Security Science and Policy Initiatives (NSSPI). In her prior role at Oak Ridge National Laboratory, where she remained for almost 9 years, Dewji was Radiological Scientist in the Center for Radiation Protection Knowledge. Her research interests include development of dose coefficients, shielding design, and nuclear material detection assay using gamma-ray spectroscopy. Her recent work has focused on associated challenges in uncertainty quantification in dose estimation/reconstruction associated with the external exposure and internal uptake of radionuclides associated with applications of emergency response, defense, nuclear medicine, and occupational/public safety using Monte Carlo radiation transport codes and internal dose modeling. Dewji completed her Masters and Ph.D. degrees in Nuclear and Radiological Engineering at the Georgia Institute of Technology in Atlanta, GA and was a fellow of the Sam Nunn Security Program. She received her Bachelor of Science in Physics from the University of British Columbia. Dewji currently serves on the National Academies of Science, Engineering, and Medicine – Nuclear and Radiation Studies Board and is a member of the Board of Directors for both the American Nuclear Society and Health Physics Society.
       

    shaheen.dewji@gatech.edu

    404.894.5800

    Office Location:
    Boggs 3-15

  • Lab
  • Research Focus Areas:
    • AI for Security
    • Cancer Biology
    • Defense
    • Diagnostics
    • Energy
    • Health & Life Sciences
    • Machine Learning
    • Nuclear
    • Risk Management
    • Systems Biology

    IRI Connections:

    Yue Chen

    Yue Chen

    Yue Chen

    Assistant Professor; Department of Biomedical Engineering at Georgia Tech & Emory

    Yue Chen is an assistant professor in the Department of Biomedical Engineering, GT/Emory. He received his Ph.D. degree in Mechanical Engineering from Vanderbilt University, M.S. in Mechanical Engineering from Hong Kong Polytechnic University, and a B.S. in Vehicle Engineering from Hunan University. His research focused on designing, modeling, and control of continuum robots and apply them in medicine.

    yue.chen@bme.gatech.edu

    404.894.5586

    Office Location:
    UAW4105

    BioMedical Mechatronics (BM2) Lab

  • BME Profile Page
  • Google Scholar

    University, College, and School/Department
    Research Focus Areas:
    • Bioengineering
    • Biotechnology
    • Human Augmentation
    • Human-Centered Robotics
    • Soft Robotics

    IRI Connections: