Robert Dickson

Robert Dickson

Robert Dickson

Professor

Dr. Dickson is the Vassar Woolley Professor of Chemistry & Biochemistry and has been at Georgia Tech since 1998. He was a Senior Editor of The Journal of Physical Chemistry from 2010-2021, and his research has been continuously funded (primarily from NIH) since 2000. Dr. Dickson has developed quantitative bio imaging and signal recovery/modulation schemes for improved imaging of biological processes and detection of medical pathologies. His work on fluorescent molecule development and photoswitching of green fluorescent proteins was recognized as a key paper for W.E. Moerner’s 2014 Nobel Prize in Chemistry. Recently, Dr. Dickson’s lab has developed rapid susceptibility testing of bacteria causing blood stream infections. Their rapid recovery methods, coupled with rigorous multidimensional statistics and machine learning have led to very simple, highly accurate and fast methods for determining the appropriate treatment within a few hours after positive blood cultures. These hold significant potential for drastically improving patient outcomes and reducing the proliferation of antimicrobial resistance.

robert.dickson@chemistry.gatech.edu

404-894-4007

Office Location:
MoSE G209A

Website

  • Related Site
  • Google Scholar

    Additional Research:
    Dr. Dickson's group is developing novel spectroscopic, statistical, and imagingtechnologies for the study of dynamics in biology and medicine.

    IRI Connections:

    Stefan France

    Stefan France

    Stefan France

    Associate Professor

    Stefan France is an Associate Professor in the School of Chemistry and Biochemistry. Professor France earned his B.S. in Chemistry (2000) from Duke University and a M.A. (2003) and Ph.D. (2005) in Organic Chemistry from Johns Hopkins University. His research group focuses on experimental methodology development, natural product synthesis, and medicinal chemistry. Owing to Prof. France's avid interest in undergraduate research, his research group has mentored and trained more than 60 undergraduates (both Georgia Tech and non-Georgia Tech students). Professor France has been the recipient of several awards for his research, mentorship, and teaching including: the 2018 Georgia Tech-Georgia Power Professor of Excellence; the 2015 Georgia Tech Senior Faculty Outstanding Undergraduate Mentor Award; the 2014 Georgia Tech Faculty Award for Academic Outreach; the 2014 Georgia Tech Hesberg Teaching Award; the 2013 Georgia Tech Sigma Xi Young Faculty Award; the 2012 National Organization for the Professional Advancement for Black Chemists and Chemical Engineers (NOBCChE) Lloyd N. Ferguson Young Scientist Award; and the 2011 National Science Foundation (NSF) CAREER Award. He heads the Chemistry FAST Program, a NSF Research Experiences for Undergraduates (REU) Site, and also serves as Chair of the NSF Chemistry REU Leadership Group.

    stefan.france@chemistry.gatech.edu

    404-385-1796

    Office Location:
    MoSE 2100K

    Website

  • Related Site
  • Google Scholar

    Research Focus Areas:
    • Cancer Biology
    • Drug Design, Development and Delivery
    Additional Research:
    Our group is interested in the design of efficient methodologies to accomplish the formation of carbon-carbon and carbon-heteroatom bonds with the intent to apply the methodology toward the synthesis of complex natural and unnatural targets. Natural Product Synthesis. Approaches to natural products not only inspire the development of new synthetic strategies, but often unveil unexpected and often interesting reactivity. Targets are chosen for their interesting biological activity along with their sheer complexity. We are interested in exploring both modular and convergent approaches to complex targets that enable facile derivatization for the development of combinatorial libraries. Medicinal Chemistry. Medicinal or pharmaceutical chemistry lies at the intersection of chemistry and pharmacy. Our group is interested in the design, synthesis and development of pharmaceutical drugs, or other chemical entities suitable for therapeutic use. We are further interested in the study of their biological properties and their quantitative structure-activity relationships (QSAR). Given that medicinal chemistry is a highly interdisciplinary science, we aim to establish several collaborations with biologists, biochemists, and computational chemists to facilitate the design and development process. In particular, we aim to develop therapeutics toward the treatment of various forms of cancer, HIV, diabetes, and neurological disorders, such as Alzheimer's and Parkinson's disease.

    IRI Connections:

    Micah Ziegler

    Micah Ziegler

    Micah Ziegler

    Assistant Professor

    Dr. Micah S. Ziegler is an assistant professor in the School of Chemical and Biomolecular Engineering and the School of Public Policy.

    Dr. Ziegler evaluates sustainable energy and chemical technologies, their impact, and their potential. His research helps to shape robust strategies to accelerate the improvement and deployment of technologies that can enable a global transition to sustainable and equitable energy systems. His approach relies on collecting and curating large empirical datasets from multiple sources and building data-informed models. His work informs research and development, public policy, and financial investment.

    Dr. Ziegler conducted postdoctoral research at the Institute for Data, Systems, and Society at the Massachusetts Institute of Technology. At MIT, he evaluated established and emerging energy technologies, particularly energy storage. To determine how to accelerate the improvement of energy storage technologies, he examined how rapidly and why they have changed over time. He also studied how energy storage could be used to integrate solar and wind resources into a reliable energy system.

    Dr. Ziegler earned a Ph.D. in Chemistry from the University of California, Berkeley and a B.S. in Chemistry, summa cum laude, from Yale University. In graduate school, he primarily investigated dicopper complexes in order to facilitate the use of earth-abundant, first-row transition metals in small molecule transformations and catalysis. Before graduate school, he worked in the Climate and Energy Program at the World Resources Institute (WRI). At WRI, he explored how to improve mutual trust and confidence among parties developing international climate change policy and researched carbon dioxide capture and storage, electricity transmission, and international energy technology policy. Dr. Ziegler was also a Luce Scholar assigned to the Business Environment Council in Hong Kong, where he helped advise businesses on measuring and managing their environmental sustainability.

    Dr. Ziegler is a member of AIChE and ACS, and serves on the steering committee of Macro-Energy Systems. His research findings have been highlighted in media, including The New York Times, Nature, The Economist, National Geographic, BBC Newshour, NPR’s Marketplace, and ABC News.

    micah.ziegler@gatech.edu

    404.894.5991

    Office Location:
    ES&T 2228

    Personal Website

  • ChBE Profile Page
  • Google Scholar

    Research Focus Areas:
    • Energy
    • Materials and Nanotechnology
    • Sustainable Engineering
    Additional Research:
    Complex SystemsEnergy and Sustainability

    IRI Connections:

    Joseph Perry

    Joseph Perry

    Joseph Perry

    Professor

    joe.perry@chemistry.gatech.edu

    (404) 385-6046

    Research Website

  • http://www.chemistry.gatech.edu/faculty/perry/
  • Research Focus Areas:
    • Biobased Materials
    • Biochemicals
    • Biorefining
    • Biotechnology
    • Pulp Paper Packaging & Tissue
    • Sustainable Manufacturing
    Additional Research:
    Analytical Chemistry; Characterization; Energy; Sustainability; Materials Chemistry; Molecular Biophysics; Nanoscience and Technology; Physical Chemistry; Polymer Chemistry; Spectroscopy; Surface and Interfacial Chemistry; Theory and Modeling

    IRI Connections:

    Thomas Orlando

    Thomas Orlando

    Thomas Orlando

    Professor, School of Chemistry and Biochemistry
    SEI Senior Advisor: Energy Minor

    Our group is primarily a surface chemistry and physics group which focuses on the use of high-powered pulsed lasers, low-energy electron scattering, micro-plasmas, mass spectrometry and ultrahigh vacuum surface science techniques. We use this "tool-set" as well as some scattering theory to unravel the details of non-thermal processes occurring under a variety of non-equilibrium conditions. Our group is based upon an interdisciplinary approach and thus our research programs span the realm of fundamental investigations in molecular physics, surface physics and chemistry, bio-physics, bio-polymer formation under pre-biotic conditions as well as working in applied areas of relevance to analytical technique developments, atmospheric chemistry, catalysis and molecular hydrogen generation.

    thomas.orlando@chemistry.gatech.edu

    404.894.4012

    Office Location:
    MoSE G209C

    Chem & BioChem Profile Page

  • Electron and Photon Induced Chemistry on Surfaces Lab
  • Google Scholar

    Research Focus Areas:
    • Conventional Energy
    • Materials and Nanotechnology
    • Molecular, Cellular and Tissue Biomechanics
    Additional Research:
    Surfaces and Interfaces; Catalysis; Advanced Characterization; Hydrogen; Nuclear

    IRI Connections:

    Jake Soper

    Jake Soper

    Jake Soper

    Associate Professor and Associate Chair for Operations

    Jake D. Soper is an Associate Professor in the School of Chemistry and Biochemistry at the Georgia Institute of Technology. Prof. Soper’s research program is a hybrid of organometallic and inorganic coordination chemistry, at the forefront of an emerging area that uses redox-active ligand complexes for redox control in bond activation and functionalization reactions. His research focuses on the development of new homogeneous catalysts for selective transformations of small molecules, with particular emphasis on multielectron reactions relevant to organic synthesis and energy conversion and storage. Recent research accomplishments include the rational design of Earth-abundant metal catalysts to functionally mimic palladium in coupling catalysis cycles and the demonstration of redox-active ligand-meditated radical control in catalytic dioxygen activation and oxygen atom transfer reactions. This research has appeared in top peer-reviewed chemistry journals, including the Journal of the American Chemical Society and Inorganic Chemistry. Prof. Soper has also been an invited contributor to special issues of the European Journal of Inorganic Chemistry on Cooperative & Redox Non-Innocent Ligands in Directing Organometallic Chemistry and an Inorganic Chemistry Forum on Redox-Active Ligands, consisting of “papers from leading scientists on a multidisciplinary topic of growing interest. His recent development of redox-active ligand-mediated cobalt cross coupling catalysis was hailed as a “breakthrough in the field” in a 2011 Highlights feature in Angewandte Chemie International Edition. 

    Prof. Soper earned a B.S. degree in chemistry from Western Washington University in 1998 and a Ph.D. in inorganic chemistry from the University of Washington in 2003. His graduate research was performed under the direction of Prof. James M. Mayer. He was subsequently an NIH Ruth L. Kirchstein Postdoctoral Fellow in the laboratories of Prof. Daniel G. Nocera at the Massachusetts Institute of Technology. In 2009 his independent research was honored with an NSF CAREER award and a DARPA Young Faculty Award (YFA). During his tenure at Georgia Tech, he has been invited to speak at 30 universities and 12 conferences, including four Gordon Research Conferences. He was the corresponding organizer of a symposium on modern redox-active ligand chemistry that was presented at the International Chemical Congress of Pacific Basin Societies, Pacifichem 2010. He created and directs the Georgia Tech–Westlake HS Energy Challenge Program, for which he received the 2010 Georgia Tech Faculty Award for Academic Outreach.

    jake.soper@chemistry.gatech.edu

    Jake Soper Profile

    Additional Research:
    Solutions to outstanding problems in benchtop-scale organic synthesis, pharmaceuticals and commodity chemicals production, petroleum manufacturing, and energy generation and storage all hinge on the development of new methods to selectively transform the chemical bonds in small molecules. Because selectivity in redox bond activation and functionalization reactions typically derives from 1e– versus 2e– redox control, the function of most synthetically useful transition metal catalysts is to mediate 2e– bond making and breaking while suppressing potentially competing 1e– reactions.The Soper Group reengineers the way transition metal catalysts impart selectivity in redox bond activation and functionalization reactions. Instead of suppressing 1e– transfer, we use the capacity of some metal–ligand combinations to undergo reversible low-energy electron transfer for kinetic control in free radical reactions. We apply these methods for controlled radical chemistry to stoichiometric and catalytic reactions that are challenging or inaccessible using current methods. Recent successes include:Earth-Abundant Coupling Catalysis. Palladium-mediated 2e– oxidative addition and reductive elimination steps form the basis for numerous coupling cycles leading to selective assembly of C–C bonds. We discovered that redox-active aminophenol-derived ligands can be used to effect palladium-like 2e– oxidative addition and reductive elimination reactions at square planar later first row metal centers. These elementary reaction steps have been utilized for development of unusually well defined cycles for cobalt cross coupling of alkyl halides with alkyl- and arylzinc halides, as well as manganese and iron catalyzed aerobic coupling of aryl Grignard reagents.Metal Oxyl Radical Coupling. Recent theoretical studies suggest transition metal oxyl radicals containing unpaired electron density at oxo are critical precursors to O–O bond formation in water oxidation catalysts. Through the use of redox-active ligands, we have been able to generate a new class of well-defined coordination complexes that exhibit oxyl radical reactivity. We recently showed that a rhenium oxyl reacts with carbon free radicals to make C–O bonds at the oxo ligand, and we demonstrated that that radical character in the metal–oxo bond leads to kinetic reactivity that is not rationalized by ground-state thermodynamic considerations.O2 Activation and Aerobic Oxidations. A challenging step in many oxygenase-type redox catalysis cycles is bimetallic cleavage of the dioxygen O–O bond to generate two transition metal oxo complexes. This reaction is also relevant to energy conversion and storage in artificial photosynthetic schemes because the kinetics of O2 electroreduction at fuel cell anodes are often poor. We have demonstrated how the ability of redox-active ligands to undergo reversible 1e– transfer can be used to bring about bimetallic O2 homolysis by lowering the kinetic barrier to formation of 1e– reduced O2 complex intermediates. We are applying this method to the development of new aerobic oxidation catalysis cycles and electrode materials for efficient for O2 reduction.To accomplish these goals, researchers in the Soper Group are skilled in the synthesis and handling of air-sensitive materials. We use a variety of spectroscopic techniques to characterize reaction products and intermediates and to perform detailed mechanistic studies.

    IRI Connections:

    Anthony J Arduengo

    Anthony J Arduengo

    Anthony Arduengo

    Professor of the Practice

    After completing his Ph.D. studies in 1976, Professor Arduengo began his professional career at the DuPont company as a member of the research staff. Within a year, he accepted a position on the chemistry faculty at the University of Illinois. Dr. Arduengo returned to DuPont in 1984 to pursue applications for a previously unknown type of phosphorus compound (ADPO) that had been discovered by his research group at Illinois. In 1999 Professor Arduengo resumed his work in academe with research groups in Germany and the United States. He is Professor of the Practice in the School of Chemistry and Biochemistry at the Georgia Institute of Technology and Saxon Professor Emeritus in organic chemistry at the University of Alabama. 

    Professor Arduengo's research in the area of main group chemistry has produced many scientific "firsts," including the discovery of the first planar T-shaped bonding arrangement at phosphorus centers. Further work in this area at DuPont uncovered a previously unrecognized "edge inversion process" that operates at main group element centers and explains many apparent anomalies in main group element chemistry. Dr. Arduengo's interest in and study of compounds with unusual valence allowed him to synthesize the first stable crystalline carbene in 1990. 

    This carbene research not only represents a milestone in chemistry, but this science also has led to a rapidly increasing variety of commercial applications. "We're looking into uses in direct catalysis, for crosslinking polymers, and for transition metals catalysis in which carbenes can be incorporated as ligands." "We've added a new tool to the chemist's repertoire which we can take off the shelf and use at will to follow imaginative ideas in new directions." 

    Recently, the Arduengo Group research has joined the efforts of the Medicines for All Institute and participates in BARDA programs to develop modern, sustainable technology that facilitates repatriation of essential chemical and pharmaceutical manufacturing to U.S. shores. 

    His research earned him an Alexander von Humboldt senior research prize and the 1996 Gold Medal for 'Excellence in Main Group Chemistry' from the International Council on Main Group Chemistry. In 2007 Professor was elected Fellow in The American Association for the Advancement of Science. 

    Professor Arduengo trained as a traditional synthetic organic chemist, but has continually sought collaborations with experts in inorganic chemistry, polymer and material science, and recently through his carbene chemistry, bioorganic catalysis in order to broaden the scope and impact of his scientific interests. As a result, he is recognized in his own right as an expert such diverse areas. Work from the arduengo group has yielded approximately 150 publications and patents including articles intended to stimulate the interest of the young and lay-public in science. 

    He values teaching and quality science education, and even from his industrial positions, Professor Arduengo has actively maintained a strong commitment to the preparation of future generations of scientists by holding lectures and demonstrations for elementary and high school classes and his supervision of a dozen post-doctoral co-workers. 

    Professor Arduengo leads research groups in the United States and Germany and provides his co-workers with opportunities to study abroad. This bi-national research program fosters a broad training experience with industrial interactions in both Germany and the United States. Professor Arduengo is a strong advocate of international research and training experiences and regularly hosts U.S. undergraduate and graduate students in laboratories in Germany. During these semesters abroad students experience everyday life and culture in Germany in addition to conducting research in a foreign research environment. Professor Arduengo provides instruction in a variety of subjects in Chemistry as well as German language instruction so that students are able to stay on track toward their degrees with no lost time.

    AJ.Arduengo@Chemistry.GaTech.edu

    (404) 385-4986

    Office Location:
    MoSE 2100N

  • Website
  • Research Focus Areas:
    • Advanced Manufacturing
    • Advanced Materials
    • Biobased Materials
    • Biochemicals
    • Biofuels
    • Biomaterials
    • Sustainable Manufacturing
    Additional Research:
    Interfaces of organic, inorganic chemistry, and material scienceChemical manufacturing infrastructure on renewable bio-mass, specifically wood – what is referred to as “Xylochemistry.”

    IRI Connections: