Erin L. Ratcliff

Portrait of Erin L. Ratcliff

Erin Ratcliff

Professor, Materials Science and Engineering

Erin L. Ratcliff is a Full Professor in the School of Materials Science and Engineering and the School of Chemistry and Biochemistry at the Georgia Institute of Technology and holds a joint appointment at the National Renewable Energy Laboratory.  Prof. Ratliff is also the Associate Director of Scientific Continuity for Director of the currently funded Energy Frontier Research Center (EFRC) entitled “Center for Soft PhotoElectroChemical Systems (SPECS)”, a center which she directed at her prior appointment at University of Arizona.  

Her group “Laboratory for Interface Science for Printable Electronic Materials” uses a combination of applications and devices with electrochemistry, spectroscopies, microscopies, and synchrotron-based techniques to understand fundamental structure-property relationships of next-generation materials for energy conversion and storage and biosensing. Materials of interest include metal halide perovskites, π-conjugated materials, colloidal quantum dots, and metal oxides. Current research is focused on mechanisms of electron transfer and transport across interfaces, including semiconductor/electrolyte interfaces and durability of printable electronic materials.

Her research program has been funded by the Department of Energy Basic Energy Sciences, the Solar Energy Technology Office, Office of Naval Research, National Science Foundation, and the Nano Bio Materials Consortium.

eratcliff8@gatech.edu

Departmental Bio

  • Lab Page

    IRI Connections:

    Chaitanya Deo

    Chaitanya Deo

    Chaitanya Deo

    Professor

    Dr. Deo came to Georgia Tech in August 2007 as an Assistant Professor of Nuclear and Radiological Engineering. Prior, he was a postdoctoral research associate in the Materials Science and Technology Division of the Los Alamos National Laboratory. He studied radiation effects in structural materials (iron and ferritic steels) and nuclear fuels (uranium dioxide). He also obtained research experience at Princeton University (Mechanical Engineering), Lawrence Livermore National Laboratory, and Sandia National Laboratories.

    chaitanya.deo@nre.gatech.edu

    (404) 385.4928

    Website

    Research Focus Areas:
    • Algorithms & Optimizations
    • Computational Materials Science
    • Conventional Energy
    • Materials for Energy
    Additional Research:

    Nuclear; Thermal Systems; Materials In Extreme Environments; computational mechanics; Materials Failure and Reliability; Ferroelectronic Materials; Materials Data Sciences


    IRI Connections:

    Julie Champion

    Julie Champion

    Julie Champion

    Professor, School Chemical and Biomolecular Engineering

    Julie Champion is the William R. McLain Endowed Term Professor in the School of Chemical and Biomolecular Engineering at Georgia Institute of Technology. She earned her B.S.E. in chemical engineering from the University of Michigan and Ph.D. in chemical engineering at the University of California Santa Barbara. She was an NIH postdoctoral fellow at the California Institute of Technology. Champion is a fellow of the American Institute for Medical and Biological Engineering and has received awards including American Chemical Society Women Chemists Committee Rising Star, NSF BRIGE Award, Georgia Tech Women in Engineering Faculty Award for Excellence in Teaching, Georgia Tech BioEngineering Program Outstanding Advisor Award. Professor Champion’s current research focuses on design and self-assembly of functional nanomaterials made from engineered proteins for applications in immunology, cancer, and biocatalysis.

    julie.champion@chbe.gatech.edu

    404.894.2874

    Office Location:
    EBB 5015

    Champion Lab

  • ChBE Profile Page
  • Google Scholar

    Research Focus Areas:
    • Biobased Materials
    • Biomaterials
    • Cancer Biology
    • Drug Design, Development and Delivery
    • Regenerative Medicine
    Additional Research:

    Cellular Materials; Drug Delivery; Self-Assembly; "Developing therapeutic protein materials, where the protein is both the drug and thedelivery system Engineering proteins to control and understand protein particleself-assembly Repurposing and engineering pathogenic proteins for human therapeutics Creating materials that mimic cell-cell interactions to modulate immunologicalfunctions for various applications, including inflammation, cancer, autoimmune disease, and vaccination"


    IRI Connections:

    Nazanin Bassiri-Gharb

    Nazanin Bassiri-Gharb

    Nazanin Bassiri-Gharb

    Harris Saunders, Jr. Chair and Professor, School of Mechanical Engineering

    Nazanin Bassiri-Gharb joined Georgia Tech in summer 2007 as an assistant professor at the George W. Woodruff School of Mechanical Engineering. Prior to this, she was a senior engineer in the materials and device R&D group of MEMS Research and Innovation Center at QUALCOMM MEMS Technologies, Inc. Her work included characterization and optimization of optical and electric response of IMOD displays and research on novel materials for improved processing and reliability of IMOD. Bassiri-Gharb's research interests are in smart and energy-related materials (e.g. ferroelectric and multiferroic materials) and their application to nano- and micro-electromechanical systems. Her research projects integrate novel micro and nanofabrication techniques and processes and study of the fundamental science of these materials at the nanoscale, at the interface of physical and electrochemical phenomena.

    nazanin.bassirigharb@me.gatech.edu

    404.385.0667

    Office Location:
    Love 315

    ME Profile Page

  • SmartLab
  • Google Scholar

    Research Focus Areas:
    • Micro and Nano Device Engineering
    • Miniaturization & Integration
    • Nanomaterials
    Additional Research:

    Ferroelectronic Materials; Functional Materials; In-Situ Characterization; Piezoelectronic Materials; Multiscale Modeling; Organic Electronics


    IRI Connections:

    Wenshan Cai

    Wenshan Cai

    Wenshan Cai

    Professor, School of Electrical and Computer Engineering

    Wenshan Cai joined the faculty of the Georgia Institute of Technology in January 2012 as an associate professor in the School of Electrical and Computer Engineering, with a joint appointment in the School of Materials Science and Engineering. Prior to this, he was a postdoctoral fellow in the Geballe Laboratory for Advanced Materials at Stanford University. His scientific research is in the area of nanophotonic materials and devices, in which he has made a major impact on the evolving field of plasmonics and metamaterials. Cai has published more than 50 papers in peer-reviewed journals, and the total citations of his recent papers have reached approxIMaTely 10,000 within the past 10 years. He authored the book, Optical Metamaterials: Fundamentals and Applications, which is used as a textbook or a major reference at many universities around the world. He received his B.S. and M.S. degrees from Tsinghua University in 2000 and 2002, respectively, and his Ph.D. from Purdue University in 2008, all in electrical/electronic engineering. Cai is the recipient of several national and international distinctions, including the OSA/SPIE Joseph W. Goodman Book Writing Award (2014), the CooperVision Science & Technology Award (2016), and the Office of Naval Research Young Investigator Award (2017).

    wcai@gatech.edu

    404.894.8911

    Office Location:
    Pettit 213

    ECE Profile Page

    Google Scholar

    Research Focus Areas:
    • Nanomaterials
    • Optics & Photonics
    Additional Research:

    Metamaterials; Nonlinear optics; Photovoltaics; Integrated photonics; Plasmonics


    IRI Connections:

    Saad Bhamla

    Saad Bhamla

    Saad Bhamla

    Assistant Professor

    Saad Bhamla studies biomechanics across species to engineer knowledge and tools that inspire curiosity.

    Saad Bhamla is an assistant professor of biomolecular engineering at Georgia Tech. A self-proclaimed "tinkerer," his lab is a trove of discoveries and inventions that span biology, physics and engineering. His current projects include studying the hydrodynamics of insect urine, worm blob locomotion and ultra-low-cost devices for global health. His work has appeared in the New York Times, the Economist, CNN, Wired, NPR, the Wall Street Journal and more.

    Saad is a prolific inventor and his most notable inventions includes a 20-cent paper centrifuge, a 23-cent electroporator, and the 96-cent hearing aid. Saad's work is recognised by numerous awards including a NIH R35 Outstanding Investigator Award, NSF CAREER Award, CTL/BP Junior Faculty Teaching Excellence Award, and INDEX: Design to Improve Life Award. Saad is also a National Geographic Explorer and a TED speaker. Newsweek recognized Saad as 1 of 10 Innovators disrupting healthcare.

    Saad is a co-founder of Piezo Therapeutics.

    Outside of the lab, Saad loves to go hiking with his partner and two dogs (Ollie and Bella).

    saadb@chbe.gatech.edu

    404-894-2856

    Office Location:
    ES&T L1224

    Website

  • Related Site
  • Google Scholar

    Research Focus Areas:
    • Biobased Materials
    • Biochemicals
    • Biomaterials
    • Biorefining
    • Biotechnology
    • Molecular, Cellular and Tissue Biomechanics
    • Pulp Paper Packaging & Tissue
    • Sustainable Manufacturing
    Additional Research:

    Biotechnology; Complex Systems; Materials and Nanotechnology. The Bhamla Lab explores fundamental and applied research questions through the development of new experimental tools and techniques at the intersection of soft matter, organismic physics and global health. Ultra-fast Organismic Physics Biologists are just starting to systematically examine ultrafast motion across species (jellyfish, mantis shrimp, trap-jaw ants), some of which achieve accelerations exceeding a million g-forces in nanoseconds. At the single-cell level, the physical biology of ultra-fast motility remains poorly understood. What is the fastest motion a single cell can achieve? How do single-cell organisms amplify power and survive repeated high accelerations? These fundamental questions guide our exploration of several non-model unicellular and multicellular organisms to uncover the principles of extreme motility at cellular scales. Biological Soft Matter Our bodies are composed almost entirely of soft, wet, squishy materials. How do the fundamental principles of soft matter and complex fluids enable us to grasp dynamic processes, from the self-assembly of proteins to the stretching of a spider web? We study a spectrum of biological soft matter, from the tears on our eyes to biological foams from insects, with the goal of connecting the microscale structures (lipids, proteins) to their consequences for macroscale biological function (contact lens-eye interaction, microbiome health). As engineers, we leverage this understanding for human-health applications, ranging from diagnostics and monitoring to artificial therapeutic replacements and biomedical devices. Frugal Science and GlobalHealth Today, although information is free to anyone with internet, access to scientific tools and healthcare devices still has many barriers. How do we design and build tools that are scientifically rigorous, but cost a few cents on the dollar? Driven by the spirit of doing “frugal science”, we box ourselves in to find out of the box solutions for global challenges in science education, agriculture, and healthcare. Projects in this area include field-work, science outreach, and citizen-science initiatives. Disciplines: Biotechnology Complex Systems Materials and Nanotechnology


    IRI Connections:

    Nima Ghalichechian

    Nima Ghalichechian

    Nima Ghalichechian

    Assistant Professor, School of Electrical and Computer Engineering
    Associate Director, Georgia Electronic Design Center

    Dr. Ghalichechian joined the Georgia Institute of Technology as an Assistant Professor in August 2021. Prior to joining Georgia Tech, he was an Assistant Professor at The Ohio State University (OSU), Columbus, from 2017 to 2021. During this period, he established the RF Microsystems Laboratory with research in the area of millimeter-wave antennas and arrays.

    Dr. Ghalichechian received his B.S. in Electrical Engineering from Amirkabir University of Technology, Iran in 2001. He received his M.S. and Ph.D. in Electrical Engineering from the University of Maryland-College Park in 2005 and 2007, respectively, with research focused on electrostatic micromotors. From 2007 to 2012, he was with the Research Department of FormFactor, Inc. (Livermore, California) as a Senior Principal Engineer. During this period, he helped design and develop microsprings for advanced probe cards used in testing memory and SoC devices. Dr. Ghalichechian joined the Department of Electrical and Computer Engineering and the ElectroScience Laboratory at OSU as a Research Scientist in 2012. From 2016 to 2017, he held a Research Assistant Professor position at OSU.

    Prof. Ghalichechian is currently an Associate Editor of the IEEE Antennas and Wireless Propagation Letters (AWPL). He is a recipient of the 2018 College of Engineering Lumley Research Award at OSU, 2019 NSF CAREER Award, 2019 US Air Force Faculty Summer Fellowship Award, and 2020 ECE Excellence in Teaching Award at OSU.

    nima.1@gatech.edu

    404-894-5867

    Office Location:
    TSRB 534

    Research Group

  • Georgia Electronic Design Center (GEDC)
    Additional Research:

    Millimeter-wave (30-300 GHz) antennas and arrays5G/6G antenna systemsReconfigurable antennas and componentsOn-chip antennas and arraysReflectarrays and phased arraysExploiting non-linear properties of phase-change materials for RF sensors


    IRI Connections:

    Jason Azoulay

    Jason Azoulay

    Jason Azoulay

    Associate Professor, School of Chemistry and Biochemistry
    Vasser-Woolley GRA Distinguished Investigator in Sensors and Instrumentation

    Jason Azoulay is an organic, organometallic and polymer chemist and internationally recognized leader in developing emerging semiconductor materials and devices. He has made significant contributions to the fields of polymer chemistry and materials science,bridging fundamental chemistry with real-world applications. His work focuses on the design, synthesis and characterization of advanced functional materials across numerous technology platforms, with an emphasis on organic semiconductors and conjugated polymers.

    Azoulay co-directs the Center for Organic Photonics and Electronics, and his lab adds great strength to Georgia Tech’s leadership in soft-matter and hybrid optoelectronics. His work also complements numerous efforts at Georgia Tech that develop and apply advanced functional materials. 

     


    Azoulay Group


    IRI Connections:

    D. Zeb Rocklin

    D. Zeb Rocklin

    Zeb Rocklin

    Assistant Professor, School of Physics
    IMS Initiative Lead, Mechanical Metamaterials

    I have a broad range of interests in soft condensed matter physics and adjacent fields like statistical physics, physics of living systems and hard condensed matter. My particular focus is on the relationship between the geometric structure of a system and its mechanical response. Both biological and engineered systems often have some structure, such as networks of struts, particles jammed together or patterns of creases in thin sheets, that grant them flexibility and strength with a minimum of weight. These structures can lead to subtle and surprising mechanical response:

    zeb.rocklin@physics.gatech.edu

    404.385.8104

    Research Website

    University, College, and School/Department
    Additional Research:

    Condensed matter physics, statistical physics, physics of living systems, and hard condensed matter.


    IRI Connections:

    Suman Datta

    Suman Datta

    Suman Datta

    Joseph M. Pettit Chair of Advanced Computing
    Professor, School of Electrical and Computer Engineering
    Georgia Research Alliance (GRA) Eminent Scholar

    Suman Datta is the Joseph M Pettit Chair of Advanced Computing and Georgia Research Alliance (GRA) Eminent Scholar and Professor in the School of Electrical and Computer Engineering at Georgia Tech. He received his B.Tech degree in electrical engineering from the Indian Institute of Technology, Kanpur, India, and his Ph.D. degree in electrical and computer engineering from the University of Cincinnati, Ohio. His research group focuses on semiconductor devices that enable new compute models such as in-memory compute, brain-inspired compute, cryogenic compute, resilient compute etc.

    From 2015 to 2022, Datta was the Stinson Endowed Chair Professor of Nanotechnology in the Electrical Engineering Department at the University of Notre Dame, where he was the Director of a multi-university microelectronics research center, ASCENT, funded by the Semiconductor Research Corporation (SRC) and the Defense Advanced Research Projects Agency (DARPA). Datta also served as the Director of a six-university research center for Extremely Energy Efficient Collective Electronics (EXCEL), funded by the SRC and National Science Foundation (NSF) to explore an alternate computing hardware that leverages continuous-time dynamics of emerging devices to execute optimization, learning, and inference tasks.

    From 2007 to 2015, he was a Professor of Electrical Engineering at The Pennsylvania State University, where his group pioneered advances in compound semiconductor-based quantum-well field effect transistors and tunneling field effect transistors.

    From 1999 to 2007, he was in the Advanced Transistor Group at Intel Corporation, where he led device R&D effort for several generations of high-performance logic transistors such as high-k/metal gate, Tri-gate and strained channel CMOS transistors. He has published over 425 journal and refereed conference papers and holds more than 187 issued patents related to semiconductor devices. In 2013, Datta was named a Fellow of the Institute of Electrical and Electronics Engineers (IEEE) for his contributions to high-performance advanced silicon and compound semiconductor transistor technologies. In 2016, he was named Fellow of the National Academy of Inventors (NAI) in recognition of his inventions that have made a tangible impact on quality of life, economic development, and the welfare of society.

    sdatta68@gatech.edu

    Office Location:
    Klaus 2360

  • ECE Profile Page
  • Google Scholar

    Research Focus Areas:
    • Semiconductors
    Additional Research:

    High-performance heterogenous compute with advanced CMOSBrain-inspired collective state computing with advanced CMOS and beyond-CMOS semiconductorsEmerging semiconductors like ferroelectric field effect transistors, insulator-to-metal phase transition oxides, high mobility semiconducting oxides for near and in-memory compute and storageSemiconductors for cryogenic computing and harsh environment computing


    IRI Connections: