Vogel to Lead Institute for Matter and Systems

Eric Vogel, IMat executive director

Effective July 1, Eric Vogel will become the executive director of the Institute for Matter and Systems (IMS), Georgia Tech’s newest Interdisciplinary Research Institute (IRI) that will launch on the same date.

As an evolution of the Institute for Materials (IMat) and the Institute for Electronics and Nanotechnology (IEN), IMS aims to enable convergent research at Georgia Tech related to the science, technology, and societal underpinnings of innovative materials and devices. Additionally, IMS seeks to integrate these innovations into systems that enhance human well-being and performance across information and communication, the built environment, and human-centric technologies that improve human health, wellness, and performance.

“Executive Vice President for Research Chaouki Abdallah and I are very excited about the launch of IMS, which positions Georgia Tech for integration of science and technology from atoms to devices, while explicitly drawing in researchers in the social sciences, design, business, and computing,” said Vice President of Interdisciplinary Research Julia Kubanek.

“IMS will ensure relevance across Georgia Tech through its newly configured Internal Advisor and Ambassador Board with representation across all six Colleges and GTRI,” she said. “Additional advisory committees representing IMS employees and facility users will ensure that we don’t sacrifice any of the research excellence for which IEN and IMat are known. With IMS I expect we will be even better positioned to tackle research problems that will have the greatest positive societal impact.”

Vogel will continue in his current position as the executive director of IMat until the launch of IMS. In addition to leading and growing IMat, Vogel is the Hightower Professor of Materials Science and Engineering at Georgia Tech’s School of Materials Science and Engineering, and he served as the IEN deputy director prior to leading IMat.

“It is an honor to be appointed executive director of the Institute for Matter and Systems, and I look forward to collaborating with the talented faculty and staff associated with it,” said Vogel. “This opportunity allows us to leverage the core competencies of IEN and IMat while extending our capabilities beyond nanotechnology and materials science. Together, we will be a hub for interdisciplinary research ranging from advanced materials to complex systems that solve global challenges.”

Georgia Tech’s IRIs facilitate collaboration between researchers and students from its six Colleges, the Georgia Tech Research Institute, national laboratories, and corporate entities to tackle critical topics of strategic significance for the Institute as well as for local, state, national, and international communities. IMS will also house and maintain the state-of-the-art Materials Characterization Facility and one of the largest academic cleanrooms in the nation, which offers a broad range of fabrication capabilities from basic discovery to prototype realization.

Before joining Georgia Tech in 2011, Vogel was an associate professor of materials science and engineering and electrical engineering at the University of Texas at Dallas. During this time, he also served as the associate director of the Texas Analog Center of Excellence and led UT Dallas’s involvement in the Southwest Academy for Nanoelectronics.

Prior to UT Dallas, he led the CMOS and Novel Devices Group and established the Nanofabrication Facility at the National Institute of Standards and Technology. Vogel holds a Ph.D. in electrical engineering from North Carolina State University and a B.S. in electrical engineering from the Pennsylvania State University. His research focuses on the development and fundamental understanding of electronic and nanomaterials and devices.

 
News Contact

Laurie Haigh
Research Communications

 

LIGO-Virgo-KAGRA Detects Remarkable Gravitational-Wave Signal

The coalescence and merger of a lower mass-gap black hole (dark gray surface) with a neutron star (greatly tidally deformed by the black hole's gravity). Credit: Ivan Markin, Tim Dietrich (University of Potsdam), Harald Paul Pfeiffer, Alessandra Buonanno (Max Planck Institute for Gravitational Physics)

This story was first published in the LIGO newsroom at CalTech.

In May 2023, shortly after the start of the fourth LIGO-Virgo-KAGRA observing run, the LIGO Livingston detector observed a gravitational-wave signal from the collision of what is most likely a neutron star with a compact object that is 2.5 to 4.5 times the mass of our Sun. Neutron stars and black holes are both compact objects, the dense remnants of massive stellar explosions.

What makes this signal, called GW230529, intriguing is that the mass of the heavier object falls within a possible mass-gap between the heaviest known neutron stars and the lightest black holes. The gravitational-wave signal alone cannot reveal the nature of this object, and future detections of similar events, especially those accompanied by bursts of electromagnetic radiation, could hold the key to solving this cosmic mystery.

"Gravitational waves offer an unprecedented glimpse into the cosmos, allowing us to study black holes and neutron stars at vast intergalactic distances," says Surabhi Sachdev, an assistant professor in the School of Physics at Georgia Tech and co-chair of the compact binary coalescence working group for the LIGO Scientific Collaboration. 

"These cosmic messengers are unveiling a surprising population of compact objects with masses that defy our previous understanding based solely on electromagnetic observations," Sachdev explains. "The latest in this list is GW230529, a compact object with a mass that falls within the theorized 'mass gap' between neutron stars and black holes – a region once thought to be devoid of such objects. The ability to peer through this new window is reshaping our knowledge of the densest objects in the universe."

The mass gap between neutron stars and black holes

Before the detection of gravitational waves in 2015, the masses of stellar-mass black holes were primarily found using x-ray observations while the masses of neutron stars were found using radio observations. The resulting measurements fell into two distinct ranges with a gap between them from about 2 to 5 times the mass of our Sun. Over the years, a small number of measurements have encroached on the mass-gap, which remains highly debated among astrophysicists. 

Analysis of the signal GW230529 shows that it came from the merger of two compact objects, one with a mass between 1.2 to 2.0 times that of our Sun and the other slightly more than twice as massive. While the gravitational-wave signal does not provide enough information to determine with certainty whether these compact objects are neutron stars or black holes, it seems likely that the lighter object is a neutron star and the heavier object a black hole. Scientists in the LIGO-Virgo-KAGRA Collaboration are confident that the heavier object is within the mass gap.  

Gravitational-wave observations have now provided almost 200 measurements of compact-object masses. Of these, only one other merger may have involved a mass-gap compact object – the signal GW190814 came from the merger of a black hole with a compact object exceeding the mass of the heaviest known neutron stars and possibly within the mass gap. 

“With the observation of GW230529, comes excitement, not just for this observation, but future observations as well," says Megan Arogeti, a graduate student in the School of Physics at Georgia Tech working on post-merger signals from compact binary mergers. 

"With every observed gravitational wave signal with at least one neutron star progenitor, we have an opportunity to further our understanding of extremely dense nuclear matter," Arogeti says. "As our detector sensitivity increases, we can hope to observe more gravitational waves from the collision of neutron stars and black holes as well as the collision between two neutron stars, which could potentially feature a special postmerger signal allowing us to probe nuclear matter in a higher mass regime than we have been able to so far."

The fourth observing run with more sensitive detectors

The highly successful third observing run of the gravitational-wave detectors ended in spring 2020, bringing the number of known gravitational-wave detections to 90. Before the start of the fourth observing run O4 on May 24, 2023, the LIGO-Virgo-KAGRA researchers made improvements to the detectors, the cyberinfrastructure, and the analysis software that allow them to detect signals from further away and to extract more information about the extreme events in which the waves are generated. 

Just five days after the launch of O4, things got really exciting. On May 29, 2023, the gravitational-wave signal GW230529 passed by the LIGO Livingston detector. Within minutes, the data from the detector was analyzed and an alert (designated S230529ay) was released publicly announcing the signal. Astronomers receiving the alert were informed that a neutron star and a black hole most likely merged about 650 million light-years from Earth. Unfortunately, the direction to the source could not be determined because only one gravitational-wave detector was observing at the time of the signal.

The fourth observing run is planned to last for 20 months including a couple of months break to carry out maintenance of the detectors and make a number of necessary improvements. By January 16, 2024, when the commissioning break started, a total of 81 significant signal candidates had been identified. GW230529 is the first of these to be published after detailed investigation.

Resuming the observing run

The fourth observing run will resume on April 10, 2024 with the LIGO Hanford, LIGO Livingston, and Virgo detectors operating together. The run will continue until February 2025 with no further planned breaks in observing. The sensitivity of the detectors should be slightly increased after the break.  

While the observing run continues, LIGO-Virgo-KAGRA researchers are analyzing the data from the first half of the run and checking the remaining 80 significant signal candidates that have already been identified. By the end of the fourth observing run in February 2025, the total number of observed gravitational-wave signals should exceed 200.

Gravitational-wave observatories

LIGO is funded by the NSF, and operated by Caltech and MIT, which conceived and built the project. Financial support for the Advanced LIGO project was led by NSF with Germany (Max Planck Society), the U.K. (Science and Technology Facilities Council) and Australia (Australian Research Council) making significant commitments and contributions to the project. More than 1,600 scientists from around the world participate in the effort through the LIGO Scientific Collaboration, which includes the GEO Collaboration. Additional partners are listed at https://my.ligo.org/census.php.

The Virgo Collaboration is currently composed of approximately 880 members from 152 institutions in 17 different (mainly European) countries. The European Gravitational Observatory (EGO) hosts the Virgo detector near Pisa in Italy, and is funded by Centre National de la Recherche Scientifique (CNRS) in France, the Istituto Nazionale di Fisica Nucleare (INFN) in Italy, and the National Institute for Subatomic Physics (Nikhef) in the Netherlands. A list of the Virgo Collaboration groups can be found at: https://www.virgo-gw.eu/about/scientific-collaboration/. More information is available on the Virgo website at https://www.virgo-gw.eu.

KAGRA is the laser interferometer with 3 km arm-length in Kamioka, Gifu, Japan. The host institute is Institute for Cosmic Ray Research (ICRR), the University of Tokyo, and the project is co-hosted by National Astronomical Observatory of Japan (NAOJ) and High Energy Accelerator Research Organization (KEK). KAGRA collaboration is composed of over 400 members from 128 institutes in 17 countries/regions. KAGRA’s information for general audiences is at the website https://gwcenter.icrr.u-tokyo.ac.jp/en/. Resources for researchers are accessible from http://gwwiki.icrr.u-tokyo.ac.jp/JGWwiki/KAGRA.

 

Surabhi Sachdev
 
News Contact

Media Contacts

Georgia Tech College of Sciences

Jess Hunt-Ralston
jess@cos.gatech.edu

LIGO-Virgo-Kagra Collaboration

Susanne Milde, LVK Communications Group Lead
+49 172-393-1349
susanne.milde@ligo.org

Caltech

Whitney Clavin
626-390-9601
wclavin@caltech.edu

MIT

Abigail Abazorius
617-253-2709
abbya@mit.edu

Virgo

Isabel Cordero
isabel.cordero@uv.es

EGO

Vincenzo Napolano
+39 347-299-4985
mailto:napolano@ego-gw.it

NSF

Jason Stoughton, Staff Associate for Science Communications
703-292-7063
jstought@nsf.gov

KAGRA

Shinji Miyoki
+81-578-85-2623
kagra-pub@icrr.u-tokyo.ac.jp

Neuroscience Study Taps Into Brain Network Patterns to Understand Deep Focus, Attention

Photo credit: Paul Skorupskas, unsplash.com

From completing puzzles and playing music, to reading and exercising, growing up Dolly Seeburger loved activities that demanded her full attention. “It was in those times that I felt most content, like I was in the zone,” she remembers. “Hours would pass, but it would feel like minutes.”

While this deep focus state is essential to highly effective work, it’s still not fully understood. Now, a new study led by Seeburger, a graduate student in the School of Psychology, alongside her advisor, Eric Schumacher, a professor in the School of Psychology is unearthing the mechanisms behind it. 

The interdisciplinary Georgia Tech team also includes Nan Xu, Sam Larson and Shella Keilholz (Coulter Department of Biomedical Engineering), alongside Marcus Ma (College of Computing), and Christine Godwin (School of Psychology).

The researchers’ study, “Time-varying functional connectivity predicts fluctuations in sustained attention in a serial tapping task,” was published in Cognitive, Affective, and Behavioral Neuroscience earlier this year, and it investigates brain activity via fMRI during periods of deep focus and less-focused work. 

The work is the first to investigate low-frequency fluctuations between different networks in the brain during focus, and could act as a springboard to study more complex behaviors and focus states.

“Your brain is dynamic! Nothing is just on or off,” Seeburger explains. “This is the phenomenon we wanted to study. How does one get into the zone? Why is it that some people can sustain their attention better than others? Is this something that can be trained? If so, can we help people get better at it?”

The dynamic brain

The team’s work is also the first to study the relationship between fluctuations in attention and the brain network patterns within these low-frequency 20-second cycles. “For quite a while, the studies on neural oscillations focused on faster temporal frequencies, and the appreciation of these very low-frequency oscillations is relatively new,” Seeburger says. “But, these low-frequency fluctuations may play a key role in regulating higher cognition such as sustained attention.”

“One of the things we've discovered in previous research is that there's a natural fluctuation in activity in certain brain networks. When a subject is not doing a specific task while in the MRI scanner, we see that fluctuation happen roughly every 20 seconds,” adds co-author Schumacher, explaining that the team was interested in the pattern because it is quasi-periodic, meaning that it doesn’t repeat exactly every 20 seconds, and it varies between different trials and subjects.

By studying these quasi-periodic cycles, the team hoped to measure the relationship between the brain fluctuation in these networks and the behavioral fluctuation associated with changes in attention.

Your attention needed

To measure attention, participants tapped along to a metronome while in an fMRI scanner. The team could measure how “in the zone” participants were by measuring how much variability was in each participant’s taps — more variability suggested the participant was less focused, while precise tapping suggested the participant was “in the zone.”

The researchers found that when a subject’s focus level changed, different regions of the brain synchronized and desychronized, in particular the fronto-parietal control network (FPCN) and default mode network (DMN), The FPCN is engaged when a person is trying to stay on task, whereas the DMN is correlated with internally-oriented thoughts (which a participant might be having when less focused). “When one is out-of-the-zone, these two networks synchronize, and are in phase in the low frequency,” Seeburger explains. “When one is in the zone, these networks desynchronize.”

The results suggest that the 20-second patterns could help predict if a person is sustaining their attention or not, and could provide key insight for researchers developing tools and techniques that help us deeply focus.

The big picture

While the direct relationship between behavior and brain activity is still unknown, these 20-second patterns in brain fluctuation are seen universally, and across species. “If you put someone in a scanner and their mind is wandering, you find these fluctuations. You can find these quasi-period patterns in rodents. You can find it in primates,” Schumacher says. “There's something fundamental about this brain network activity.”

“I think it answers a really fundamental question about the relationship between behavior and brain activity,” he adds. “Understanding how these brain networks work together and impact behavior could lead to new therapies to help people organize their brain networks in the most efficient way.”

And while this simple task might not investigate complex behaviors, the study could act as a springboard to move into more complicated behaviors and focus states. “Next, I would like to study sustained attention in a more naturalistic way,” Seeburger says. “I hope that we can further the understanding of attention and help people get a better handle on their ability to control, sustain, and increase it.”

 


DOI: https://doi.org/10.3758/s13415-024-01156-1

Dolly Seeburger
Eric S.
 
News Contact

Written by Selena Langner

Contact: Jess Hunt-Ralston

Astronomy Club Lets Students Share Their Passion for the Stars

An Astronomy Club Public Night

Photo by Rob Felt

This week, 50 students from Georgia Tech’s Astronomy Club will travel to Missouri to view the solar eclipse on April 8. Georgia isn’t in the path of totality — which occurs when the moon fully covers the sun — but Missouri is, and club members want to be there to experience the rare celestial event. While viewing the eclipse is the organization’s biggest adventure of the year, it is just one of many events the club hosts every month. The group is a place for hobbyist astronomers and physics students to connect over their love of the solar system and the mysteries within it.

Every Monday, the club hosts meetings at which a topic of astronomical interest — such as black holes or stellar evolution — is presented; attendees then visit the Georgia Tech Observatory to see what the sky has in the store for them that night.

“I am completing the astrophysics concentration for my studies, so I can apply what I learn in class to the club and explain to people what they’re actually looking at,” said Ethan Atkinson, club president and a fourth-year physics major. They also take monthly field trips to the observatory at Fernbank Museum for a different view of the sky and the chance to use older telescopes.

Once a month, weather permitting, the Astronomy Club invites everyone to join in on the fun with Public Nights at the Georgia Tech Observatory. Club members place telescopes outside the Howey Physics Building, where anyone take a look through the lens at whichever planet is in focus that evening. The events are popular, not just across campus but also Atlanta. Most nights, almost 350 people attend.

The club’s signature annual event for members is usually a field trip to dedicated dark sky area Deerlick Astronomy Village in Sharon, Georgia, to see constellations unadulterated by light pollution and capture them via astrophotography. “The main attraction for most people is seeing the Milky Way and counting shooting stars,” Atkinson said. While this year’s field trip is to Missouri for the eclipse, they are still bringing the cameras along.

The club wasn’t always this popular on campus. Even though the organization started in 2007 when Tech built the observatory, membership had dropped to only 20 members by 2021. Covid-19 made hosting a lot of people in a small observatory challenging, so faculty advisor James Sowell recommended they move the telescopes outside, increasing the number of people who could attend and the interest in studying physics. “Sometimes students take my classes because the club let them know about my courses,” Sowell said.

Atkinson has also worked to make the club more accessible to every major and interest level. Computational media student Victoria Nguyen was one of those students. Although she has loved astronomy since childhood, it was just a hobby until she found the club in her first year. “The community is really great and relaxed,” said Nguyen, who is incoming president of the club. “We’ve created a safe environment to learn about space, and you don’t even need to have your own telescope.”

Although solar eclipses don’t happen annually, the Astronomy Club is stronger and bigger than ever. Whether someone gazes at the stars nightly or has never even looked through a telescope, the club is open to the campus community — so everyone can better understand what lies beyond our planet.

 
News Contact

Tess Malone, Senior Research Writer/Editor

tess.malone@gatech.edu

Georgia Tech Researchers Develop More Broadly Protective Coronavirus Vaccine

Patient getting a vaccine

Scientists have been searching for the optimal coronavirus vaccine since the Covid-19 pandemic started. The mRNA vaccines developed through the federal government's "Operation Warp Speed" program were a massive innovation; however, annually updating those boosters for specific SARS-CoV-2 variants is inefficient for scientists and patients. SARS-CoV-2 is just one member of the Sarbecovirus (SARS Betacoronavirus) subfamily (others  include SARS-CoV-1, which caused the 2002 SARS outbreak, as well as other viruses circulating in bats that could cause future pandemics).

Researchers at the Georgia Institute of Technology and the University of Wisconsin-Madison have developed a new vaccine that offers broad protection against not only SARS-CoV-2 variants, but also other bat sarbecoviruses. The groundbreaking trivalent vaccine has shown complete protection with no trace of virus in the lungs, marking a significant step toward a universal vaccine for coronaviruses.

“We had been working on strategies to make a broadly protective vaccine for a while,” said Ravi Kane, Garry Betty/V Foundation Chair and GRA Eminent Scholar in Cancer Nanotechnology and professor in the School of Chemical and Biomolecular Engineering. “This vaccine may protect not just against the current strain circulating that year, but also future variants.”

They presented their findings in “Broad protection against clade 1 sarbecoviruses after a single immunization with cocktail spike-protein-nanoparticle vaccine,” published in the February edition of Nature Communications

Kane and his research group have been working on the technologies to develop more widely protective vaccines for viruses since he joined Georgia Tech in 2015. Although the team didn’t specifically foresee Covid-19 arising when it did, pandemics have regularly occurred throughout human history. While the team pivoted their vaccine research to address coronaviruses, they were surprised by how rapidly each new variant arose, making their broader vaccine even more necessary.

Once they realized the challenge inherent in how fast SARS-CoV-2 mutates, they had two options for how to build a vaccine: design one to be widely preventative against the virus, or use the influenza vaccine, which updates annually for the anticipated prevalent variant, as a model.

Making a broad vaccine is more appealing because it enables patients to get one shot and be protected for years. To create their general vaccine, Kane’s team capitalized on the key to the original mRNA vaccines — the spike protein, which binds the virus to healthy cells. Their vaccine uses three prominent spike proteins, or a trivalent vaccine, to elicit a broad enough antibody response to make the vaccine effective against SARS-CoV-2 variants as well as other sarbecoviruses that have been identified as having pandemic potential.

“If you know which variant is circulating, you can immunize with the spike protein of that variant,” Ph.D. student and co-author Kathryn Loeffler said. “But a broad vaccine is more difficult to develop because you’re protecting against many different antigens versus just one.”

Collaborators in the Kawaoka group at the University of Wisconsin tested their vaccine in hamsters, which they had previously identified as an appropriate animal model to evaluate vaccines and immunotherapies against SARS-CoV-2. The vaccine was able to neutralize all SARS-CoV-2 omicron variants tested, as well as non-SARS-CoV-2 coronaviruses circulating in bats. Even better, the vaccine provided complete protection with no detectable virus in the lungs.

Kane hopes that the vaccine strategy his team identified can be applied to other viruses — other coronavirus subfamilies as well as other viruses such as influenza viruses. They also expect that some of the specific antigens they describe in this paper can be moved toward preclinical trials. Someday, a trivalent vaccine could comprise a routine part of people’s medical treatment.

 

 
News Contact

Tess Malone, Senior Research Writer/Editor

tess.malone@gatech.edu

Special Edition of 'AI Magazine' Spotlights Georgia Tech's NSF AI Institutes

AAAI: AI Magazine 2024 Volume 45 Issue 1 Cover

The cover image was generated by Midjourney, a generative artificial intelligence program and service created and hosted by the San Francisco–based independent research lab Midjourney, Inc. Midjourney generates images from natural language descriptions, called prompts, similar to OpenAI's DALL-E and Stability AI's Stable Diffusion, responding to a prompt that included notions of, “people from various professions (teachers, nurses, farmers, engineers, and artists), working together to create and guide AI to facilitate collaboration, innovation, and problem-solving for the common good.” While this is a challenging concept for man or machine to represent in a single image, this issue’s articles describing the U.S. National AI Research Institutes will paint richer portraits.

The Association for the Advancement of Artificial Intelligence released its Spring 2024 special issue of AI Magazine (Volume 45, Issue 1). This issue highlights research areas, applications, education initiatives, and public engagement led by the National Science Foundation (NSF) and USDA-NIFA-funded AI Research Institutes. It also delves into the background of the NSF’s National AI Research Institutes program, its role in shaping U.S. AI research strategy, and its future direction. Titled “Beneficial AI,” this issue showcases various AI research domains, all geared toward implementing AI for societal good.

The magazine, available as open access at https://onlinelibrary.wiley.com/toc/23719621/2024/45/1a one-year effort, spearheaded and edited by Ashok Goel, director of the National AI-ALOE Institute and professor of computer science and human-centered computing at Georgia Tech, along with Chaohua Ou, AI-ALOE’s managing director and assistant director, Special Projects and Educational Initiatives Center for Teaching and Learning (CTL) at Georgia Tech, and co-author Jim Donlon, the NSF's AI Institutes program director.

In this issue, insights into the future of AI and its societal impact are presented by the three NSF AI Institutes headquartered at Georgia Tech:

The magazine provides a comprehensive overview of how each of the 25 institutes is shaping the future of AI research.

About 'AI Magazine'

AI Magazine is an artificial intelligence magazine by the Association for the Advancement of Artificial Intelligence (AAAI). It is published four times each year, and is sent to all AAAI members and subscribed to by most research libraries. Back issues are available online (issues less than 18 months old are only available to AAAI members).

The purpose of AI Magazine is to disseminate timely and informative articles that represent the current state of the art in AI and to keep its readers posted on AAAI-related matters. The articles are selected to appeal to readers engaged in research and applications across the broad spectrum of AI. Although some level of technical understanding is assumed by the authors, articles should be clear enough to inform readers who work outside the particular subject area. 

To learn more, click here.

 
News Contact

Breon Martin

AI Research Communications Manager

Georgia Tech

Spring Workshop Engages Diverse Stakeholders in Shaping the Future of Biorefining and the Bioeconomy

RBI's Carson Meredith, Research Initiative Leads and Faculty, with Andreas Villegas, Keynote Speaker and President of the Georgia Forestry Association

From Left to Right: Gary Black, Bo Arduengo, and Andy Bommarius (RBI Strategic Initiative Lead) from the ReWOOD Initiative, Larissa Fenn from RYAM, Andreas Villegas, President of the Georgia Forrest Association and Keynote Speaker, Chris Luettgen RBI Strategic Initiative Lead, Carsten Sievers, RBI Strategic Initiative Lead, Matthew Realff, RBI Strategic Initiative Lead, Carson Meredith, RBI Executive Director, and Valerie Thomas, RBI Strategic Initiative Lead.

RBI Fellows Discussing Their Research with the Workshop Participants

RBI Fellows Discussing Their Research with the Workshop Participants

With the nation’s goals to net zero well underway and the world moving toward sustainable production methods, biorefineries play a crucial role in our transition to a greener future. These multifaceted facilities convert biomass into biofuels, biochemicals, and bioproducts; foster a circular economy; and reduce reliance on fossil fuels while promoting environmentally friendly industrial practices.

The Renewable Bioproducts Institute (RBI) at Georgia Tech recently hosted a workshop on the Emerging Bioeconomy and the Future of Biorefining. The event cultivated new partnerships as more than 75 attendees from academia, national laboratories, and industry shared and learned about the cutting-edge developments in the emerging field.

Carson Meredith, executive director of RBI, said, “The workshop provided an immersive experience for the attendees with access to knowledge, opportunities to network, and a platform for collaboration to positively impact their understanding and involvement in this rapidly evolving field. I saw a lot of human connections being made, a lot of people shaking hands, and having conversations off to the side. That’s exactly why we hold such workshops — to exchange ideas within the Institute as well as between researchers in universities, industry, and national labs.”

The program started with a keynote by B. Frank Gupton, professor of chemical and life science engineering at Virginia Commonwealth University, on creating resilient national supply chains for essential medicines and the need for waste reduction through process chemistry improvements to reduce the carbon footprint in the pharmaceutical industry.

Kim Nelson, CTO of GranBio and Georgia Tech Alumnus at the 2024 RBI Spring Workshop

Kim Nelson, CTO of GranBio and Georgia Tech Alumnus at the 
2024 RBI Spring Workshop

Various presentations from RBI’s research faculty demonstrated the depth of research in the field of bioeconomy and biorefineries. Topics included integrated biorefining processes by multicomponent separations and catalytic conversion, lignin-derived phenol as the new platform of biorefineries, catalytic conversion of organic acids, data-driven biorefinery process control, hot topics in lifecycle assessment, and more.

A highlight of the annual workshop was the student poster session that showcased the diversity of research happening in the renewable bioproducts field. Over 25 RBI Fellows, spanning chemical and biomolecular engineering, mechanical engineering, materials science and engineering, civil and environmental engineering, and chemistry and biochemistry presented their research to a highly engaged audience.

Andreas Villegas, president of the Georgia Forestry Association and the dinner keynote speaker, addressed the need for educating the community about working forests and their potential to create carbon-neutral products and reduce greenhouse gas emissions. Working forests in the state of Georgia are managed with a growth-over-harvest-rate of 50% and are a natural solution to the major challenges in sustainable forests and communities.

2024 RBI Student Fellows at the Workshop

2024 RBI Student Fellows at the Workshop

Blake Simmons, keynote speaker from the Lawrence Berkeley National Laboratory, discussed the importance of intellectual property models and licensing technology models that will allow companies to access new processes emerging in the field.

Mi Li, assistant professor of biorefinery and sustainable materials from the University of Tennessee, presented his research on the modification of plant cell walls, while Bronson P. Bollock, professor of forest biometrics and quantitative timber management at the University of Georgia, presented the current issues and factors in the quantification of forest biomass feedstocks.

Student Panel at the RBI Spring Workshop

Student Panel at the RBI Spring Workshop

Kim Nelson, the chief technology officer of GranBio, addressed the opportunities and challenges in meeting the global demand for sustainable aviation fuel (SAF) and low-carbon bioproducts. Nelson presented GranBio’s patented AVAP technology that uses woody biomass to produce SAF, renewable diesel, electricity, and other byproducts like BioPlus nanocellulose for tires in the process.

“At this moment, there is a tremendous federal, state, and industrial focus on developing the U.S. bioeconomy,” Meredith said. “RBI's vision is that pulp producers and users of wood extractives and byproducts have an opportunity to develop higher margin products from woody biomass residues, including plastics, pharmaceuticals, and fuels, without disrupting current paper and lumber markets. Traditional petrochemical producers of these products have an opportunity to substitute more carbon-neutral sources as feedstocks. Our workshop sought a conversation around the opportunities and challenges from feedstock to the marketplace.



 

 
News Contact

Priya Devarajan || RBI Communications Program Manager

Photo Credit: Leah Yetter, Photographer

Two-Way Cell-based Treatment Repairs Muscle After Rotator Cuff Injury

Rotator cuff treatment

A combination of mobilizing agent, designed to “push” pro-healing cells into the blood, and SDF-1a, designed to “pull” the cells into the injury site, leads to an increase in muscle regeneration following a rotator cuff tear. Muscle regeneration was characterized based on the number of centrally located nuclei (marked with the white arrows).

A team of Georgia Tech researchers has introduced a new therapeutic system to offset the poor clinical outcomes often associated with common rotator cuff surgery.

It’s the kind of surgery that makes headlines whenever a famous athlete is sidelined with a torn rotator cuff. Major League Baseball All-Star pitchers Clayton Kershaw and Justin Verlander, for example, both had rotator cuff surgeries and made successful comebacks.

For those of us who can’t throw baseballs 95 miles an hour, the rotator cuff may tear over time from repeated overhead motions (painters and carpenters, for instance). Or an injury can occur as we age and our body’s tissues naturally degenerate. And although rotator cuff injuries are common, they can be serious, leading to muscle degeneration after surgery.

Now, two professors from the Wallace H. Coulter Department of Biomedical Engineering, a joint department of Georgia Tech and Emory University, have addressed the problem with a novel cell-based dual treatment, which they describe in a study published recently in the journal Tissue Engineering.

“We’re thinking mainly of an aging population with this study — the people most likely to have these injuries,” said Johnna Temenoff, whose research group collaborated with the lab of Ed Botchwey on this work. “The great thing about this system is, it isn’t specific to a particular population. These are cells we all have, and this treatment system might work even better in younger patients.”

Local Delivery

The rotator cuff is a group of muscles and tendons surrounding and protecting the shoulder joint, keeping the head of the upper arm bone firmly in the shallow socket of the shoulder. It’s tight jumble of tissues, and not an easy environment for muscle regeneration.

“With a rotator cuff injury, you’re actually tearing the tendon,” said Temenoff, director of the NSF Engineering Research Center for Cell Manufacturing Technologies (CMaT) at Georgia Tech. “And that causes the muscle to atrophy.”

 While pro athletes have access to world-class training and rehabilitation to help rebuild the shoulder following surgery, for many patients that rotator cuff muscle doesn’t fully regenerate, even after a successful surgery. Temenoff isn’t sure why.

“That’s a big unknown,” she said. “And it’s a big field of study right now, an active area of research. There is a need for regenerative therapies that can be used in conjunction with rotator cuff restoration surgery, as a long-term treatment option —that is what we are addressing.”

In previous studies using mouse models, Temenoff found that she could change the cellular environment in the muscle with the local injection of microparticles loaded with a protein called stromal cell-derived factor (SDF), which can attract various pre-regenerative cells circulating to the muscle.

The Push-Pull Effect

The idea is to mobilize the cells that can heal, the cells that rebuild muscle at the source. Getting enough of them to do the work is the trick.

Temenoff’s lab has developed microparticles that use heparin, a natural sugar-based molecule found in the body that has a high negative charge. SDF is positive-charged, so that electrostatic interaction between the two particles allows for controlled release of SDF over time.

SDF interacts almost magnetically with a receptor on pro-regenerative cells in bone marrow or circulation to “call” them to a certain location. However, older people may not have enough of these cells in circulation to make much of a difference in healing. That’s where Botchwey’s lab entered with the major assist.

His team provided experience with a bone marrow mobilizing agent (called VPC01091) that can send healing cells into circulation around the body. In clinical settings, bone marrow mobilizing agents are used to “push” stem cells out of the marrow and into the blood. These cells can regenerate and differentiate into all kinds of cells in multiple tissue environments.

The researchers set out to develop a single therapeutic option by combining the two technologies. Here's what happened when they tested the system in rats: The mobilizing agent was injected systemically while the SDF was injected locally into the shoulder. So, while the mobilizing agent “pushed” pro-healing cells into circulation, SDF’s magnetic effect “pulled” them to the injury site, resulting in the desired regenerative effects.

The researchers found different levels of regeneration spatially—in other words, where they applied the local injection really matters. Further research will aim to fine-tune the process, so clinicians can recruit healing cells to even more specific areas of the damaged muscle. Temenoff and her collaborators believe they are onto something that will result in better muscle regeneration, with potential applications beyond the rotator cuff.

 

This work was supported by the National Institutes of Health (grant no. R01AR071026).

CITATION: Leah Anderson, Liane Tellier, Keshav Shah, Joseph Pearson, Alexandra Brimeyer, Ed Botchwey, Johnna Temenoff. “Bone Marrow Mobilization and Local Stromal Cell-Derived Factor-1a Delivery Enhances Nascent Supraspinatus Muscle Fiber Growth,” Tissue Engineering.

DOI: https://doi.org/10.1089/ten.tea.2023.0128

Temenoff and Botchwey

Coulter BME researchers Johnna Temenoff and Ed Botchwey

 
News Contact

Growing Bacteria in Space with Astronauts

Georgia Tech Ph.D. student Jordan McKaig demonstrates how NASA astronauts onboard the International Space Station will use the MinION sequencing device to identify bacteria genomes. Credit: Georgia Tech

Georgia Tech Ph.D. student Jordan McKaig demonstrates how NASA astronauts onboard the International Space Station will use the MinION sequencing device to identify bacteria genomes. Credit: Georgia Tech

This story by Kelsey Gulledge first appeared in the Daniel Guggenheim School of Aerospace Engineering newsroom. See the full feature here.

Georgia Tech researchers are teaming up with NASA to study bacteria on the International Space Station to help define how scientists and healthcare professionals combat antibiotic-resistant bacteria for long-duration space missions.

In the Planetary eXploration Lab (PXL), researchers will work with astronauts living on the International Space Station as they collect air, water, and surface samples. Using testing methods created on campus, the astronauts and scientists will watch microbes grow to learn which bacteria are resistant to specific antibiotics. 

The work is part of NASA’s Genomic Enumeration of Antibiotic Resistance in Space (GEARS) study, led by Aaron Burton and Sarah Wallace from NASA Johnson Space Center. Marking SpaceX’s 30th Commercial Resupply Services mission for NASA, the GEARS research is on board a SpaceX Dragon cargo spacecraft, scheduled to launch from Cape Canaveral, Florida on March 21. If all goes according to plan, the Dragon capsule will reach the International Space Station on the morning of March 23.

“Our lab has previously studied bacteria colonies from the International Space Station and found Enterococcus faecalis (EF) was resistant to many antibiotics,” said Christopher E. Carr, director of the PXL and assistant professor in the School of Aerospace Engineering (AE) and the School of Earth and Atmospheric Sciences (EAS). “This particular bacteria species is a core member of the human gut and has evolved over the past 400 million years, making it a difficult pathogen to treat in humans and on surfaces.”

EF is the second leading cause of hospital-acquired infections after Staphylococci. Much like hospital environments, on the International Space Station is built in such a way that studying antibiotic-resistant microbes there could provide insight into how these organisms survive, adapt, and evolve in space and on Earth. 

The 30-day GEARS mission will supplement the routine microbial surveillance testing conducted on the International Space Station with an antibiotic-resistant screening step. Astronauts onboard will collect samples and observe what microbes grow on their pre-treated contact slides, a rectangular-shaped petri dish. 

The contact slides contain antibiotic-infused agar, a gel-like fuel source for bacteria, fungi, and other microorganisms. Therefore, anything that grows on the slides will be identified as antibiotic-resistant to that particular antibiotic. Astronauts will then use a pipet to carefully extract DNA from a bacterial colony and sequence it using the Oxford Nanopore Technologies MinION, nanopore sequencing device, which will identify the microbe that is present, as well as sequence its entire genome in real-time. “If we found a new organism that we’ve never seen before, we’d be able to detect it, sequence its entire genome, and determine how it might be resistant to different types of antibiotics,” said Carr. 

This new technology will allow humans to travel further - and longer - into space without having to send data back to Earth for processing. “For the purposes of this study and to maximize the science yield, these bacteria will travel back to Earth,” said Jordan McKaig, PXL researcher and Ph.D. candidate in the EAS. “Then we can study them more extensively to better reveal their genomic features, how they are adapting to the built environment, and understand the risks – if any -- they may pose to astronauts.”

Scientists and researchers at NASA Johnson will use this information to figure out what may make astronauts sick in space, how to optimize their health, and make plans for potential counter measures and treatments. This data is critical because astronauts’ immune systems often become compromised due to space flight conditions. The GEARS mission will launch a total of four times over the next year to study the bacteria and data thoroughly. The second mission is expected to launch later this summer. 

“I’m really looking forward to hopefully traveling to the launch and getting to see the science that we’ve been working on for a couple of years go to space. It’s really a dream come true,” said McKaig. 

While GEARS is in orbit, Carr and the PXL team will prepare for their next study, EnteroGAIT, which will investigate thousands of mutants simultaneously to see what genes are involved in adapting to the space environment.  It is currently in the science verification testing phase. 

 
News Contact

Kelsey Gulledge
Daniel Guggenheim School of Aerospace Engineering 
Georgia Tech

Georgia Tech Launches Quadrant-i, a New Unit to Enhance Research Commercialization

Georgia Tech, Tech Tower

Georgia Tech Launches Quadrant-i, a New Unit to Enhance Research Commercialization

Georgia Tech's Office of Commercialization introduces Quadrant-i, a new unit dedicated to helping faculty, researchers, and students translate their research into startups.

The name is inspired by Pasteur’s quadrant in the Daniel Stokes innovation-impact model and will emphasize the translation of deep scientific research into products. (See more information about Pasteur’s quadrant here.)

Quadrant-i will join the other units in commercialization — the Office of Technology Licensing, VentureLab, and CREATE-X — in making Georgia Tech the premier campus for startups and commercialization.

“As we grow our efforts toward delivering impact through commercialization, creating a unit that is solely focused on helping our faculty, students, and researchers launch startups based on their research is essential,” said Raghupathy “Siva” Sivakumar, vice president of Commercialization and chief commercialization officer.

The functions of Quadrant-i have historically been supported by VentureLab, a national leader in entrepreneurship training and research. The reorganization will also allow VentureLab to amplify its impact in making Georgia Tech a thought leader for entrepreneurship.

Quadrant-i will be a comprehensive resource for the thriving research community on campus, facilitating the journey from innovations to impact. The unit will offer programs, resources, and services tailored to expedite and enhance the commercialization process, including:

  • Advocating for policy changes and incentive structures to foster a culture of impact.
  • Securing non-dilutive grant funding.
  • Navigating conflicts of interest to maintain research integrity.
  • Providing mentorship on the business aspects of innovation.
  • Interfacing with customers, investors, and mentors.
  • Launching startups with essential resources and support.

A search is currently underway for a director, who will report to Sivakumar.

The Office of Commercialization invites faculty, researchers, students, investors, mentors, industry leaders, and innovators to collaborate with Quadrant-i and learn more about its programs and services.

For more information, visit: commercialization.gatech.edu/quadrant-i.

Qi Logo
 
News Contact

Lacey Cameron
Marketing Communications Manager