Nano@Tech Spring 2024 Series | Enabling Roll-to-Roll Manufacture of Thin Films through Conventional and Innovative Coating Processes

Abstract: In recent decades, printing and coating techniques have received interest for manufacturing of low-cost flexible electronics, membranes, electrochemical systems, packaging/encapsulation, and pharmaceuticals. The functionality of these devices and materials depends significantly on the print resolution, with typical feature sizes ranging from millimeters to microns and material properties with respect to scaled manufacture.

OPTEC Femtosecond Laser Micro-machining System Installation Presentation

The Optec LSV-Flex Micro-machining Laser System uses a femto-second laser to process practically any material through ultra-short laser pulse photo-ablation. The ultra-short laser pulse is effective on polymers, metal, glasses, single crystals, and polymorphic crystals. Materials are ionized by the laser pulse and removed from the surface in a plasma cloud, leaving a clean surface at the interaction site.

Georgia Tech Energy Materials Day

The Georgia Tech Energy Materials Day will bring together representatives from academia, government, and industry to accelerate energy materials research. It will also provide an opportunity for key stakeholders to interact with Georgia Tech researchers in this important area. 

Materials Research Science and Engineering Centers (MRSEC) Information Session

The National Science Foundation (NSF) is gearing up to unveil a major funding announcement in Fall 2024 to establish new Materials Research Science and Engineering Centers (MRSECs). These centers support interdisciplinary materials research and education addressing fundamental problems in science and engineering. MRSECs foster groundbreaking research and offer sustained support for university-based materials research. 

Six Named to National Academy of Inventors

Faculty selected for NIA

Six Georgia Tech College of Engineering faculty members are among the National Academy of Inventors (NAI) 2023 Class of Fellows. The honor is the highest professional distinction awarded solely to inventors.

No other university or organization in the world has more honorees this year than Georgia Tech. The group of six holds more than 200 patents.

  • Farrokh Ayazi, electrical and computer engineering
  • Maohong Fan, civil and environmental engineering
  • Christopher Jones, chemical and biomolecular engineering
  • Wilbur Lam, biomedical engineering
  • Susan Margulies, biomedical engineering
  • Karthikeyan Sundaresan, electrical and computer engineering

The Georgia Tech engineers are among 162 worldwide inventors honored in 2023. According to the NAI, “their work spans across disciplines and exemplifies their dedication and inspiration to translating research into commercial technologies that benefit society.”

The 2023 class will be honored in June at the NAI annual meeting.

Read the full story at the College of Engineering website.

News Contact

Jason Maderer, College of Engineering Director of Communications 

 

jason.maderer@coe.gatech.edu

Georgia Tech and Samsung Look to Unleash the Future of Digital Storage

Shot of Corridor in Working Data Center Full of Rack Servers and Supercomputers with Internet connection Visualisation Projection

The rise of artificial intelligent (AI)-driven marvels hinges on cutting-edge data storage solutions. Without efficient data storage, applications like self-driving cars, life-saving healthcare diagnostics, and responsive voice assistants would fall short of their true potential.

At the forefront of this evolving data storage landscape, a collaboration between the Georgia Institute of Technology and Samsung seeks to substantially decrease the voltage in existing technology, unlocking the full potential of AI systems.

“Finding innovative solutions in data storage is paramount, it’s not just about saving photos or documents anymore. The storage needed is about enabling AI systems to transform how we interact with our devices, the world around us, and even each other,” said Asif Khan, an assistant professor in the School of Electrical and Computer Engineering (ECE) with a joint appointment in the School of Materials Science and Engineering (MSE).

Khan's lab is spearheading the collaboration which brings together three ECE labs, including those of Professors Suman Datta and Shimeng Yu. The lead author of the paper is Dipjyoti Das, a postdoctoral fellow under Khan's supervision. The second author, Hyeonwoo Park, conducts research under Datta. The team is joined by researchers from MSE, the Institute of Materials, the Institute of Electronics and Nanotechnology, and a dedicated team from Samsung.

“This is a pivotal era of transformation and opportunity in high-memory compute,” said co-author Suhwan Lim, an engineer at Samsung. “Strategic intersectoral relationships like this between Samsung and Georgia Tech nurture innovative thinking and lead to exciting experiential results that push us all forward.”

Adding to the already substantial Georgia Tech presence in the field of computer memory storage, the team's findings will be featured at the upcoming International Electron Devices Meeting (IEDM) in San Francisco this month.

The Quest for Voltage Efficiency

The research focuses on improving NAND flash technology found at the core of storage devices like solid-state hard drives, USB sticks, and SD cards. NAND boasts an impressive 1,000-layer 3D architecture, cramming 100 terabytes of data into a minuscule space.

However, the critical challenge is NAND’s persistent high voltage requirements. Exceeding 20 volts poses challenges in computing due to increased energy consumption, heat generation, and the risk of damaging electronic components.

“NAND has been the backbone of data storage, so our research doesn't attempt to replace it; it's an upgrade. We're boosting NAND's power and pushing it into the digital storage future,” said Das, who designed and executed experiments, as well as contributed to characterization.

A Ferroelectric Future

The paper’s groundbreaking proposal aims to revolutionize NAND flash technology by replacing the traditional NAND gate stack — a multi-layered structure in a transistor essential for controlling the flow of electrical current in semiconductor devices — with a new ferroelectric structure and a tunneling barrier.

The team's method, introducing aluminum oxide (Al2O3) in the middle of the ferroelectric stack, has dramatically improved data storage capability, reducing voltage requirements by an impressive 40-60%.

Additionally, the study reveals that the Al2O3 layer functions as a tunnel barrier, impeding electron motion and establishing a dipole, creating an additional electric field that aligns with the polarization direction, boosting device memory performance.

The experiential findings could transform various sectors, including AI, mobile devices, edge data processing, embedded systems, and overall computing efficiency. 

“This breakthrough charts a new course towards more efficient, reliable and dense data storage solution,” said Datta, who is the Joseph M. Pettit Chair of Advanced Computing in ECE and a Georgia Research Alliance (GRA) Eminent Scholar. “We are grateful to Samsung for their continued support, as we work towards the next milestone.”

Looking for Collective Solutions to Shared Challenges

According to Das, the approach not only demonstrates the capability to achieve reduced voltage and enhanced memory but also aligns with scalability and broad industry adoption. 

As the project ventures into commercial avenues, the input of Samsung's researchers will be crucial. Das and Park are actively uncovering the intricacies of disturbances that could impede the market acceptance of the new gate stack.

In this context, disturbances refer to any unintended disruptions or deviations from transistor behavior expectations. Das stresses the importance of understanding, controlling, and clearly defining disturbance specifications. Establishing a well-defined threshold for disturbances is pivotal for achieving widespread commercialization readiness in their research.

“Working alongside industry leaders like Samsung is essential for any endeavor aiming to make a transformative impact in everyday technology,” added Khan. “It becomes particularly pertinent as we collectively look towards a future dominated by the power required to fuel advancements in AI.”
 

Citation: Dipjyoti Das*, Hyeonwoo Park*, Zekai Wang, Chengyang Zhang, Prasanna Venkatesan Ravindran, Chinsung Park, Nashrah Afroze, Po-Kai Hsu, Mengkun Tian, Hang Chen, Winston Chern, Suhwan Lim, Kwangsoo Kim, Kijoon Kim, Wanki Kim, Daewon Ha; Shimeng Yu, Suman Datta, Asif Khan. “Experimental Demonstration and Modeling of a Ferroelectric Gate Stack with a Tunnel Dielectric Insert for NAND Applications.” Proceedings of the 2023 IEEE International Electron Devices Meeting (IEDM). Paper # 24.1

News Contact

Dan Watson

New IEN Center to Research Wearable Technologies

Flexible health monitor created by Georgia Tech Researchers

A new research center in the Institute for Electronics and Nanotechnology (IEN) will help bring together human-centered bioelectronics technology research to improve human healthcare and expand human-machine interface technologies.

The Wearable Intelligent Systems and Healthcare (WISH) Center will work to push innovation in wearable sensors and electronics technologies. Focus areas of the center will include electronics, artificial intelligence, biological science, material sciences, manufacturing, system design, and medical engineering.

“We are excited by the promise of bioelectronics improving human health and all the exciting science engineering that is required to make it a reality,” said Michael Filler, interim executive director of IEN.

WISH is directed by W. Hong Yeo, associate professor in Georgia Tech’s George W. Woodruff School of Mechanical Engineering and the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory, and Yuhang Hu, associate professor in the School of Chemical and Biomolecular Engineering at Georgia Tech.

“I founded WISH to bring together Georgia Tech’s expertise in various disciplines and to create opportunities for developing wearable bioelectronics and human-machine technologies leading to better lives and communities,” said Yeo.

Yeo’s research focuses on developing soft sensors, electronics and robotics for health monitoring and disease diagnosis at the intersection of human and machine interaction. Other researchers in the center represent disciplines from across Georgia Tech’s Colleges of Engineering, Computing, Sciences, Design, and Liberal Arts; Emory University; and Children’s Healthcare of Atlanta.

WISH will be one of IEN’s 10 strategic research centers, along with the 3D Systems Packaging Research Center, a graduated NSF Engineering Research Center focusing on advanced packaging using 2.5D and 3D heterogeneous integration technologies, and the Georgia Electronic Design Center, one of the world’s largest university-based semiconductor research centers. WISH is an evolution of the Center for Human-Centric Interfaces and Engineering, which received seed funding from IEN to focus on collaborative research for human-centered design, biofeedback control, and integrated nanosystems to advance human-machine interaction in the scope of healthcare.

IEN supports early-stage research in underfunded research areas that span all disciplines in science and engineering through its seed grant programs, which focus on research in biomedicine, electronics, optoelectronics and photonics, and energy applications.

W. Hong Yeo
News Contact

Amelia Neumeister, Research Communications 

Andreas Heirlemann Gives Inaugural Oliver Brand Memorial Lecture on Electronics and Nanotechnology

Andreas Heirlemann and Micheal Filler (Photo by Laurie Haigh)

The inaugural Oliver Brand Memorial Lectureship on Electronics and Nanotechnology was held on Nov. 13 at Georgia Tech. The lecture was presented by Andreas Heirlemann, professor of biosystems science and engineering at ETH Zürich, on microphysicological systems and highly integrated microelectrode arrays.

His talk marks the beginning of an annual lecture series established in memory of Professor Oliver Brand, who passed away in April. Brand had served as the executive director of the Georgia Tech Institute for Electronics and Nanotechnology (IEN) since 2014.

“Oliver’s work, especially in microelectromechanical systems and CMOS-based microsystems, is widely respected in the community, with more than 190 publications to his name,” said Mike Filler, IEN’s interim executive director. “Andreas Heirlemann’s scientific contributions embody the innovative spirit and excellence that Oliver championed throughout his life.”

In addition to their research connection, Heirlemann also had a personal connection with Brand. They worked closely together in the same research lab at ETH Zürich for three years before Brand moved to Georgia Tech.

“What impressed me most about Oliver was his innate friendliness,” said Hierlemann. “He was always supportive. He was always motivating students. I never heard a harsh word come out of him. He had an extremely positive outlook on life that I learned to admire. That is what I take as his legacy.”

Hierlemann’s lecture was presented in two parts. The first focused on microfluidics, hanging drop networks, and microphysiological systems. Microphysicological systems are 3D cell assemblies, or membrane structures like organs, that occur naturally in the body or are grown with stem cells. These systems allow for comprehensive testing and studying tissue interactions. 

The second part of his talk focused on high-density microelectrode array systems, including neuronal systems characterization and the handling and use of neurons.

Brand spent more than 20 years as a member of the Georgia Tech faculty. In addition to leading IEN, he was a professor in the School of Electrical and Computer Engineering, director of the Coordinating Office for the NSF-funded National Nanotechnology Coordinated Infrastructure (NNCI), and director of the Southeastern Nanotechnology Infrastructure Corridor, one of the 16 NNCI sites.

Brand united researchers in the fields of electronics and nanotechnology, fostering collaboration and expanding IEN to include more than 200 faculty members. In addition to his respected work in the field of microelectromechanical systems, he is remembered for his kindness, dedication, and unwavering support toward all who knew him.

News Contact

Amelia Neumeister
amelia.neumeister@research.gatech.edu

2024 NNCI Etch Symposium | Advances in Micro- & Nanoscale Patterning of Strategic and Emerging Materials for Electronic, Photonic, Quantum, & MEMS Devices

We extend a warm invitation to you and your organization to participate in the NNCI Etch Symposium at Georgia Tech. This event, scheduled for April 24-26, 2024, is organized by the National Nanotechnology Coordinated Infrastructure (NNCI), a network supported by the National Science Foundation (NSF).

About NNCI