Kostas Konstantinidis

Kostas Konstantinidis

Kostas Konstantinidis

Professor

Dr. Kostas Konstantinidis joined the Georgia Institute of Technology as an Assistant Professor in November 2007. He received his BS in Agriculture Sciences from the Aristotle University of Thessaloniki (Greece) in 1999. He continued his studies at the Center for Microbial Ecology at Michigan State University (East Lansing, MI) under the supervision of Prof. James M. Tiedje, where he obtained a PhD in 2004. His PhD studies were fully supported by the Bouyoukos Fellowship program and were devoted in advancing our understanding of the ecology and physiology of soil bacteria through the comparative analysis of their whole-genome sequences. This research resulted in a NSF-funded project to advance the species definition for prokaryotes, which also fostered a short post-doc position at the Center for Microbial Ecology. He then moved to MIT and the laboratory of Prof. Edward DeLong to get trained on innovating metagenomic techniques. His work at MIT provided important new insights into the complexity and function of oceanic microbial communities as well as how life is adapting in the deep and cold Oceans. His research interests are at the interface of genomics and computational biology in the context of microbial ecology with the overarching goal to broaden understanding of the genetic and metabolic potential of the microbial world. Advancing our knowledge on these issues is essential for a better understanding of the microbes that power, by and large, the biogeochemical cycles that sustain life on Earth and cause or control important diseases in humans and animals. He is a member of the American Society for Microbiology (ASM), the International Society for Microbial Ecology (ISME) and the Association of Environmental Engineering and Science Professors (AEESP). Konstantinidis held the Carlton S. Wilder Junior Professorship for five years and subsequently received the Maulding Faculty Fellowship in the School of Civil and Environmental Engineering.

kostas.konstantinidis@gatech.edu

404-385-3628

Office Location:
ES&T 3224

Website

  • Related Site
  • Google Scholar

    Research Focus Areas:
    • Molecular Evolution
    • Systems Biology
    Additional Research:
    Environmental microbiology and genomics Computational approaches for studying the ecology and evolution of microorganisms Development of genomic and proteomic techniques to investigate and quantify in-situ important microbial-mediated processes Population and single-cell genomics Assessing the extent and value of biodiversity within natural assemblages of Bacteria and Archaea Biotechnological applications of microbial functional diversity Environmental relevance of microbial diseases Our laboratory focuses on the smallest organisms on the planet, the bacteria and the archaea, which represent the largest reservoir of biodiversity on Earth, drive the life-sustaining biogeochemical cycles, and cause or control diseases in humans, animals, and plants. Our scientific interests are at the interface of microbial ecology with engineering and computational biology. The long-term goals of our research is to broaden understanding of the genetic and metabolic diversity of the microorganisms and to explore this biodiversity for biotechnological applications.

    IRI Connections:

    Christine Heitsch

    Christine Heitsch

    Christine Heitsch

    Professor

    Christine Heitsch is Professor of Mathematics at Georgia Tech, with courtesy appointments in Biological Sciences and Computational Science & Engineering as well as an affiliation with the Petit Institute for Bioengineering & Bioscience.

    She is also Director of the new Southeast Center for Mathematics and Biology (SCMB), an NSF-Simons MathBioSys Research Center, and finishing her tenure directing the GT Interdisciplinary Mathematics Preparation and Career Training (IMPACT) Postdoctoral Program.

    Heitsch's research interests lie at the interface between discrete mathematics and molecular biology, specifically combinatorial problems "as motivated by" and "with applications to" fundamental biomedical questions like RNA folding.

    Students interested in pursuing graduate studies in discrete mathematical biology can do so through a number of GT PhD programs including Bioinformatics or Quantitative Biosciences as well as Algorithms, Combinatorics, and Optimization (ACO), Computational Science & Engineering (CSE), and (of course) Mathematics.
     

    heitsch@math.gatech.edu

    404-894-4758

    Office Location:
    Skiles 211B

  • Related Site
  • University, College, and School/Department
    Research Focus Areas:
    • Systems Biology
    Additional Research:
    Heitsch's research interests lie at the interface between discrete mathematics and molecular biology, specifically combinatorial problems "as motivated by" and "with applications to" fundamental biomedical questions like RNA folding.

    IRI Connections:

    Christopher Rozell

    Christopher Rozell

    Christopher Rozell

    Professor; School of Electrical and Computer Engineering
    Director; Sensory Information Processing Lab

    crozell@gatech.edu

    404.385.7671

    Office Location:
    Centergy One 5218

    SIPLab

  • ECE Profile Page
  • Google Scholar

    Research Focus Areas:
    • Artificial Intelligence (AI)
    • Neuroscience
    Additional Research:
    Biological and computational vision Theoretical and computational neuroscience High-dimensional data analysis Distributed computing in novel architectures Applications in imaging, remote sensing, and biotechnology Dr. Rozell's research interests focus on the intersection of computational neuroscience and signal processing. One branch of this work aims to understand how neural systems organize and process sensory information, drawing on modern engineering ideas to develop improved data analysis tools and theoretical models. The other branch of this work uses recent insight into neural information processing to develop new and efficient approaches to difficult data analysis tasks.

    IRI Connections:

    Eva Dyer

    Eva Dyer

    Eva Dyer

    Assistant Professor

    Dyer’s research interests lie at the intersection of machine learning, optimization, and neuroscience. Her lab develops computational methods for discovering principles that govern the organization and structure of the brain, as well as methods for integrating multi-modal datasets to reveal the link between neural structure and function.

    evadyer@gatech.edu

    404-894-4738

    Office Location:
    UAW 3108

    Website

  • Related Site
  • Google Scholar

    Research Focus Areas:
    • AI
    • Neuroscience
    Additional Research:
    Eva Dyer’s research combines machine learning and neuroscience to understand the brain, its function, and how neural circuits are shaped by disease. Her lab, the Neural Data Science (NerDS) Lab, develops new tools and frameworks for interpreting complex neuroscience datasets and building machine intelligence architectures inspired by the brain. Through a synergistic combination of methods and insights from both fields, Dr. Dyer aims to advance the understanding of neural computation and develop new abstractions of biological organization and function that can be used to create more flexible AI systems.

    IRI Connections:

    Ashok Goel

    Ashok Goel

    Ashok Goel

    Professor; School of Interactive Computing
    Director| Ph.D. program in Human-Centered Computing; College of Computing
    Co-Director; Center for Biologically Inspired Design
    Fellow; Brook Byers Institute for Sustainable Systems

    Ashok Goel is a Professor of Computer Science in the School of Interactive Computing at Georgia Institute of Technology in Atlanta, USA. He obtained his Ph.D. from The Ohio State University. At Georgia Tech, he is also the Director of the Ph.D. Program in Human-Centered Computing, a Co-Director of the Center for Biologically Inspired Design, and a Fellow of Brook Byers Institute for Sustainable Systems. For more than thirty years, Ashok has conducted research into artificial intelligence, cognitive science and human-centered computing, with a focus on computational design, modeling and creativity. His recent work has explored design thinking, analogical thinking and systems thinking in biological inspired design (https://www.youtube.com/watch?v=wiRDQ4hr9i8), and his research is now developing virtual research assistants for modeling biological systems. Ashok teaches a popular course on knowledge-based AI as part of Georgia Tech's program on Online Masters of Science in Computer Science. He has pioneered the development of virtual teaching assistants, such as Jill Watson, for answering questions in online discussion forums (https://www.youtube.com/watch?v=WbCguICyfTA). Chronicle of Higher Education recently called virtual assistants exemplified by Jill Watson as one of the most transformative educational technologies in the digital era. Ashok is the Editor-in-Chief of AAAI's AI Magazine.

    ashok.goel@cc.gatech.edu

    Office Location:
    GVU/TSRB

    Design & Intelligence Laboratory

    Google Scholar

    Research Focus Areas:
    • Human Augmentation
    • Platforms and Services for Socio-Technical Frontier
    • Shaping the Human-Technology Frontier
    Additional Research:
    Artificial Intelligence; Cognitive Science; Computational Design; Computational Creativity; Educational Technology; Design Science; Learning Science and Technology; Human-Centered Computing

    IRI Connections:

    King Jordan

    King Jordan

    King Jordan

    Professor
    Director, Bioinformatics Graduate Program

    King Jordan is Professor in the School of Biological Sciences and Director of the Bioinformatics Graduate Program at the Georgia Institute of Technology. He has a computational laboratory and his group works on a wide variety of research and development projects related to: (1) human clinical & population genomics, (2) computational genomics for public health, and (3) computational approaches to functional genomics. He is particularly interested in the relationship between human genetic ancestry and health. His lab is also actively engaged in capacity building efforts in genomics and bioinformatics in Latin America. 

    king.jordan@biology.gatech.edu

    404-385-2224

    Office Location:
    EBB 2109

    Website

  • http://biosciences.gatech.edu/people/king-jordan
  • Google Scholar

    Research Focus Areas:
    • Bioinformatics
    • Computational Genomics
    • Public Health
    Additional Research:
    Epigenetics ; Computational genomics for public health. We are broadly interested in the relationship between genome sequence variation and health outcomes. We study this relationship through two main lines of investigation - human and microbial.Human:we study how genetic ancestry and population structure impact disease prevalence and drug response. Our human genomics research is focused primarily on complex common disease and aims to characterize the genetic architecture of health disparities, in pursuit of their elimination.Microbial:we develop and apply genome-enabled approaches to molecular typing and functional profiling of microbial pathogens that cause infectious disease. The goal of our microbial genomics research is to empower public health agencies to more effectively monitor and counter infectious disease agents.

    IRI Connections:

    Martha Grover

    Martha Grover

    Martha Grover

    Professor, School of Chemical and Biomolecular Engineering
    Associate Chair for Graduate Studies, School of Chemical and Biomolecular Engineering
    James Harris Faculty Fellow, School of Chemical and Biomolecular Engineering
    Member, NSF/NASA Center for Chemical Evolution

    Grover’s research activities in process systems engineering focus on understanding macromolecular organization and the emergence of biological function. Discrete atoms and molecules interact to form macromolecules and even larger mesoscale assemblies, ultimately yielding macroscopic structures and properties. A quantitative relationship between the nanoscale discrete interactions and the macroscale properties is required to design, optimize, and control such systems; yet in many applications, predictive models do not exist or are computationally intractable.

    The Grover group is dedicated to the development of tractable and practical approaches for the engineering of macroscale behavior via explicit consideration of molecular and atomic scale interactions. We focus on applications involving the kinetics of self-assembly, specifically those in which methods from non-equilibrium statistical mechanics do not provide closed form solutions. General approaches employed include stochastic modeling, model reduction, machine learning, experimental design, robust parameter design, and estimation.

    martha.grover@chbe.gatech.edu

    404.894.2878

    Office Location:
    ES&T 1228

    Grover Group

  • ChBE Profile Page
  • Google Scholar

    Research Focus Areas:
    • Electronic Materials
    • Molecular Evolution
    • Nuclear
    Additional Research:
    Colloids; Crystallization; Organic and Inorganic Photonics and Electronics; Polymers; Discrete atoms and molecules interact to form macromolecules and even larger mesoscale assemblies, ultIMaTely yielding macroscopic structures and properties. A quantitative relationship between the nanoscale discrete interactions and the macroscale properties is required to design, optimize, and control such systems; yet in many applications, predictive models do not exist or are computationally intractable. The Grover group is dedicated to the development of tractable and practical approaches for the engineering of macroscale behavior via explicit consideration of molecular and atomic scale interactions. We focus on applications involving the kinetics of self-assembly, specific those in which methods from non-equilibrium statistical mechanics do not provide closed form solutions. General approaches employed include stochastic modeling, model reduction, machine learning, experimental design, robust parameter design, estIMaTion, and optimal control, monitoring and control for nuclear waste processing and polymer organic electronics

    IRI Connections:

    Robert Butera

    Robert Butera

    Robert Butera

    Vice President for Research Operations
    Associate Dean for Research and Innovation, College of Engineering
    Professor

    rbutera@gatech.edu

    404-894-2935

    Office Location:
    UAW 3111

    Website

  • Related Site
  • Google Scholar

    Research Focus Areas:
    • Neuroscience
    Additional Research:
    Neuromodulation of peripheral nerve activity Real-time control methods applied to electrophysiology measurements Autonomic modulation of visceral organs. Our laboratory combines engineering and neuroscience to tackle real-world problems. We utilize techniques including intracellular and extracellular electrophysiology, computational modeling, and real-time computing.

    IRI Connections:

    Seth Hutchinson

    Seth Hutchinson

    Seth Hutchinson

    Executive Director of the Institute for Robotics and Intelligent Machines, Professor and KUKA Chair for Robotics

    I am currently Professor and KUKA Chair for Robotics in the School of Interactive Computing, and the Executive Director of the Institute for Robotics and Intelligent machines at the Georgia Institute of Technology. I am also Emeritus Professor of Electrical and Computer Engineering at the University of Illinois at Urbana-Champaign.

    seth@gatech.edu

    404-385-7583

    Office Location:
    Klaus Advanced Computing Building | Suite 1322

    Personal Page

  • College of Computing Profile
  • Google Scholar

    Research Focus Areas:
    • Autonomy
    • Shaping the Human-Technology Frontier
    Additional Research:
    Robots never know exactly where they are, what they see, or what they're doing. They live in dynamic environments, and must coexist with other, sometimes adversarial agents. Robots are nonlinear systems that can be underactuated, redundant, or constrained, giving rise to complicated problems in automatic control. Many of even the most fundamental computational problems in robotics are provably hard. Over the years, these are the issues that have driven my group's research in robotics. Topics of our research include visual servo control, planning with uncertainty, pursuit-evasion games, as well as mainstream problems from path planning and computer vision.

    IRI Connections:

    Timothy Charles Lieuwen

    Timothy Charles Lieuwen

    Timothy Charles Lieuwen

    Interim Executive Vice President for Research
    Interim AE School Chair and Regents' Professor

    Tim Lieuwen is the interim executive vice president for Research (EVPR) at the Georgia Institute of Technology. In this role, he oversees the Institute’s $1.45 billion portfolio of research, economic development, and sponsored activities. This includes leadership of the Georgia Tech Research Institute (GTRI), the Enterprise Innovation Institute, nine interdisciplinary research institutes (IRIs), and related research administrative support units.

    In his 25-plus years at Georgia Tech, Liuewen earned his master's and Ph.D. degrees in mechanical engineering (1996 and 1999, respectively) and has held multiple leadership positions. He has been the executive director of the Strategic Energy Institute (SEI) since 2012 and began serving as the interim chair of the Daniel Guggenheim School of Aerospace Engineering in 2023.

    Lieuwen has received numerous honors and recognition for his work in clean energy systems and policy, national security, and regional economic development. Additionally, he has been awarded the titles of Regents’ Professor and the David S. Lewis, Jr. Chair in AE. He is also a member of the National Academy of Engineering and is a fellow of the American Society of Mechanical Engineers and the American Institute of Aeronautics and Astronautics.

    tim.lieuwen@aerospace.gatech.edu

    (404) 894-3041

    Office Location:
    Guggenheim Building, Room 363

    Website

    Research Focus Areas:
    • Aerospace
    • Conventional Energy
    • Hydrogen Equity
    • Hydrogen Leadership
    • Hydrogen Utilization
    Additional Research:

    Acoustics; Fluid Mechanics; Combustion; Signal Processing


    IRI Connections: