Gabe Kwong

Gabe Kwong

Gabe Kwong

Associate Professor
Director, Laboratory for Synthetic Immunity

Dr. Gabe Kwong is an Assistant Professor in the Wallace H. Coulter Department of Biomedical Engineering at the Georgia Tech School of Engineering and Emory School of Medicine. His research program is conducted at the interface of the life sciences, medicine and engineering where a central focus is understanding how to harness the sophisticated defense mechanisms of immune cells to eradicate disease and provide protective immunity. Kwong has pioneered numerous biomedical technologies and published in leading scientific journals such as Nature Biotechnology and Nature Medicine. His work has been profiled broadly including coverage in The Economist, NPR, BBC, and WGBH-2, Boston 's PBS station. Professor Kwong earned his B.S. in Bioengineering with Highest Honors from the University of California, Berkeley and his Ph.D. in Bioengineering from California Institute of Technology with Professor James R. Heath. He conducted postdoctoral studies at Massachusetts Institute of Technology with Professor Sangeeta N. Bhatia. For his work, Dr. Kwong has been awarded the NIH Ruth L. Kirschstein National Research Service Award, named a "Future Leader in Cancer Research and Translational Medicine" by the Massachusetts General Hospital, and awarded the Burroughs Wellcome Fund Career Award at the Scientific Interface, a distinction given to the 10 most innovative bioengineers in the nation. Dr. Kwong holds seven issued or pending patents in cancer nanotechnology.

gkwong@gatech.edu

404-385-3746

Office Location:
Marcus Nanotechnology 3132

Website

  • Related Site
  • Google Scholar

    Research Focus Areas:
    • Biomaterials
    • Cancer Biology
    • Cell Manufacturing
    • Chemical Biology
    • Drug Design, Development and Delivery
    • Miniaturization & Integration
    • Nanomaterials
    • Systems Biology
    Additional Research:
    Human health has been transformed by our collective capacity to engineer immunity — from the pivotal development of the smallpox vaccine to the curative potential of recent cancer immunotherapies. These examples motivate our research program that is conducted at the interface of Engineering and Immunology, and where we develop biomedical technologies and applications that shape a diverse array of immunological systems.The questions that are central to our exploration include: How do we begin to study an individual's repertoire of well over one billion immune cells when current technologies only allow us to study a handful of cells at a time? What are the biomarkers of immunological health as the body responds to disease and ageing, and how may these indicators trigger clinical decisions? And how can we genetically rewire immune cells to provide them with entirely new functions to better fight complex diseases such as cancer?To aid in our studies, we use high-throughput technologies such as next-generation sequencing and quantitative mass spectrometry, and pioneer the development of micro- and nanotechnologies in order to achieve our goals. We focus on clinical problems in cancer, infectious diseases and autoimmunity, and ultimately strive to translate key findings into therapies for patients.

    IRI Connections:

    Michelle LaPlaca

    Michelle LaPlaca

    Michelle LaPlaca

    Professor

    Michelle C. LaPlaca, Ph.D. is an Associate Professor in the Department of Biomedical Engineering, a joint department between Georgia Tech and Emory University. Dr. LaPlaca earned her undergraduate degree in Biomedical Engineering from The Catholic University of America, Washington, DC, in 1991 and her M.S.E. (1992) and Ph.D. (1996) in Bioengineering from the University of Pennsylvania, Philadelphia, PA, in the area of neuronal injury biomechanics. Following post-doctoral training in Neurosurgery at the University of Pennsylvania’s Head Injury Center from 1996-98, she joined the faculty at Georgia Tech. Dr. LaPlaca’s research interests are in neurotrauma, specifically: traumatic brain injury, injury biomechanics, cell culture modeling of traumatic injury, neural tissue engineering, and cognitive impairment associated with brain injury and aging. Her research is funded by NIH, NSF, and the Coulter Foundation.

    michelle.laplaca@bme.gatech.edu

    404-385-0629

    Office Location:
    UAW 3109

    Website

  • Related Site
  • Google Scholar

    Research Focus Areas:
    • Biomaterials
    • Molecular, Cellular and Tissue Biomechanics
    • Neuroscience
    • Regenerative Medicine
    Additional Research:
    LaPlaca's broad research interests are in neurotrauma, injury biomechanics, and neuroengineering as they relate to traumatic brain injury (TBI). The goals are to better understand acute injury mechanisms in order to develop strategies for neuroprotection, neural repair, and more sensitive diagnostics. More specifically, the lab studies mechanotransduction mechanisms, cellular tolerances to traumatic loading, and plasma membrane damage, including mechanoporation and inflammatory- & free radical-induced damage. We are coupling these mechanistic-based studies with –omics discovery in order to identify new biomarker candidates. In addition, LaPlaca and colleagues have developed and patented an abbreviated, objective clinical neuropsychological tool (Display Enhanced Testing for Cognitive Impairment and Traumatic Brain Injury, DETECT) to assess cognitive impairment associated with concussion and mild cognitive impairment. An immersive environment, coupled with an objective scoring algorithm, make this tool attractive for sideline assessment of concussion in athletic settings. Through working on both basic and clinical levels she is applying systems engineering approaches to elucidate the complexity of TBI and promoting bidirectional lab-to-clinical translation.

    IRI Connections:

    Nick Sahinidis

    Nick Sahinidis

    Nick Sahinidis

    Gary C. Butler Family Chair
    Professor

    Nick Sahinidis is the Butler Family Chair and Professor in the H. Milton Stewart School of Industrial and Systems Engineering and the School of Chemical and Biomolecular Engineering at Georgia Tech. His current research activities are at the interface between computer science and operations research, with applications in various engineering and scientific areas, including: global optimization of mixed-integer nonlinear programs: theory, algorithms, and software; informatics problems in chemistry and biology; process and energy systems engineering. Sahinidis has served on the editorial boards of many leading journals and in various positions within AIChE (American Institute of Chemical Engineers). He has also served on numerous positions within INFORMS (Institute for Operations Research and the Management Sciences), including Chair of the INFORMS Optimization Society. He received an NSF CAREER award, the INFORMS Computing Society Prize, the MOS Beale-Orchard-Hays Prize, the Computing in Chemical Engineering Award, the Constantin Carathéodory Prize, and the National Award and Gold Medal from the Hellenic Operational Research Society. Sahinidis is a member of the U.S. National Academy of Engineering and a fellow of AIChE and INFORMS.

    nikos@gatech.edu

    (404) 894-3036

    Website

    Research Focus Areas:
    • Artificial Intelligence (AI)

    IRI Connections:

    Shella Keilholz

    Shella Keilholz

    Shella Keilholz

    Associate Professor

    Dr. Keilholz has been working in preclinical imaging for more than twenty years, with the goal of using animal models to improve the analysis of human MRI imaging. Her research uses multimodal approaches to extract information about neural dynamics from functional neuroimaging studies.

    sk233@mail.gatech.edu

    404-727-2433

    Office Location:
    Emory, HSRB W230

    Website

    Google Scholar

    Research Focus Areas:
    • Neuroscience
    Additional Research:
    The goal of my research is to develop a method for mapping spontaneous activity throughout the whole brain with high spatial and temporal resolution, with the intention of using this technique to characterize alterations in dynamic neural activity linked to dysfunction and to identify potential targets for intervention. My primary expertise is in fMRI and functional connectivity mapping, and since my lab was established at Emory, we have focused on obtaining information about the dynamic activity of functional networks from the BOLD signal. Despite BOLD's indirect relationship to neural signals, evidence is growing that the BOLD fluctuations provide information about behaviorally relevant network activity. We take a two-pronged approach to the problem, combining MRI with direct neural measures like electrophysiology and optical imaging in the rodent, or with EEG and behavioral outputs in the human. Our effort to understand the relationship between BOLD and electrical or optical recordings (very different signals that cover very different spatial and temporal scales) has led us to develop new approaches to data analysis that include spectral, spatial, and temporal information. To better understand the large-scale dynamics of brain activity, we have become fluent in network modeling, nonlinear dynamics, and machine learning.

    IRI Connections:

    Anant Paravastu

    Anant Paravastu

    Anant Paravastu

    Associate Professor

    Anant Paravastu holds bachelors (MIT, 1998) and Ph.D. degrees (UC Berkeley, 2004) in chemical engineering. His Ph.D. research with Jeffrey Reimer focused on the use of lasers to control nuclear spin polarizations in the semiconductor GaAs. From 2004 to 2007, he worked as a postdoc at the Laboratory of Chemical Physics at NIH with Robert Tycko, where he learned to apply nuclear magnetic resonance to structural biology. Paravastu’s early structural biology work focused amyloid fibrils of the Alzheimer’s β-amyloid peptide. He was part of the team and community that showed that amyloid fibril formation is a complex phenomenon, with individual peptides exhibiting multiple aggregation pathways capable of producing multiple distinct aggregated structures. Between 2008 and 2015, Paravastu worked as an assistant professor at Florida State University and the National High Magnetic Field Laboratory. Paravastu started his present position at Georgia Tech in 2015. Paravastu’s laboratory presently focuses on 3 general lines of inquiry: 1) structural analysis of peptides that were rationally designed to assemble into nanostructured materials, 2) nonfibrillar aggregates of the Alzheimer’s β-amyloid peptide, and 3) aggregation due to misfolding of proteins driven away from their natural folds.

    anant.paravastu@chbe.gatech.edu

    404-385-4604

    Office Location:
    MoSE 4100N

  • Related Site
  • Google Scholar

    Research Focus Areas:
    • Regenerative Medicine
    Additional Research:
    Solid state NMR structural biology of self-assembled peptides and proteins Self-assembly of the Alzheimer's beta-amyloid peptide Designer self-assembling peptides for applications in regenerative medicine

    IRI Connections:

    Jonathan Stiles

    Jonathan Stiles

    Jonathan Stiles

    Professor, Microbiology, Biochemistry & Immunology

    Graduate
    University of Salford
    Degree: Doctor of Philosophy

    Undergraduate
    University of Ghana
    Degree: Bachelor of Science

    Research Interests

    Molecular pathogenesis of neglected diseases that affect the central nervous system (CNS) with emphasis on cerebral malaria and African trypanosomiasis ("Sleeping Sickness")


    Our research is focused on three main areas; a) Understanding pathogen-induced brain encephalopathy, and b) Research and development of anti-parasitic drugs and c) Understanding immunopathogenesis of Sickle Cell Disease
    Pathogen-induced brain neuropathy (Cerebral malaria & African Trypanosomiasis). In collaboration with the Neuroscience Institute here at MSM, Queens College, NY, University of Ghana Medical School, and CDC, Atlanta, GA, we are studying the role of cerebral malaria (CM) and African trypanosomiasis (HAT) in brain neuropathy. Both diseases impact the central nervous system and result in diffuse encephalopathy in the infected. The encephalopathy associated with malaria for example is associated with 10-14% of mortality with an estimated annual death of 1-2.5 million annual deaths globally. The molecular mechanisms controlling these outcomes are unclear. Current studies ignore malaria-induced gross neurological defects and the impact of this disease on learning, cognitive function and neuro-psychology. The absence of effective vaccines or drugs to protect against these diseases coupled with the increasing drug resistance has resulted in the re-emergence of malaria and trypanosomiasis in the tropics and subtropics. We are employing bio-informatics, functional genomics, and proteomics in human and mouse disease models to study the role of immunomodulators, apoptosis, and signaling factors in CM and HAT-induced brain pathology.

    Research & Development of anti-parasitic drugs. In collaboration with Yale University, University of Mississippi Medical Center, (UMC), and Noguchi Medical Research Institute in Ghana, we are targeting cation homeostasis mechanisms of trypanosomes during infection. Millions of Latin Americans infected with Trypanosoma cruzi (Chagas disease) suffer chronic splenomegaly, cardiac myopathy and megacolonitis while millions are at risk of infection with African trypanosomes (HAT) in Africa. HIV infection exacerbates susceptibility to and further complicates malaria and HAT. Available drugs are very toxic while supplies are precariously low. We are targeting cation pumps (cation ATPases) utilized by trypanosomes for uptake of nutrients, as well as for regulating cell volume and intracellular pH as drug targets. Blocking these ion pumps by specific drugs or antibodies inhibit proliferation of these parasites in vitro and in their hosts. By understanding parasite ion homeostasis during infection, we hope that novel strategies to intervene by drugs may be developed.

    Genomics & Immunopathogenesis of Sickle Cell Disease SCD. In collaboration with Drs. Adamkiewicz, Hibbert, Gee, and Buchanan at Morehouse School of Medicine, we provide postdoctoral research training in various aspects of sickle cell disease (SCD) immuno-pathogenesis in human and murine models. SCD and other hemoglobinopathies are responsible for significant morbidity and mortality among people of African, Mediterranean and South Asian descent.

    jstiles@msm.edu

    (404) 752-1585

    University, College, and School/Department

    IRI Connections:

    Amirali Aghazadeh

    Amirali Aghazadeh

    Amirali Aghazadeh

    Assistant Professor

    Amirali Aghazadeh is an Assistant Professor in the School of Electrical and Computer Engineering and also program faculty of Machine Learning, Bioinformatics, and Bioengineering Ph.D. programs. He has affiliations with the Institute for Data Engineering and Science (IDEAS) and Institute for Bioengineering and Biosciences. Before joining Georgia Tech, Aghazaeh was a postdoc at Stanford and UC Berkeley and completed his Ph.D. at Rice University. His research focuses on developing machine learning and deep learning solutions for protein and small molecular design and engineering.
     

    aaghazadeh3@gatech.edu

    713-257-5758

    Office Location:
    CODA S1209

    Profile Page

    Google Scholar

    Research Focus Areas:
    • Algorithms & Optimizations
    • Big Data
    • Bioengineering
    • Bioinformatics
    • Biotechnology
    • Computational Genomics
    • Computational Materials Science
    • Diagnostics
    • Drug Design, Development and Delivery
    • Machine Learning
    • Systems Biology

    IRI Connections:

    Felipe Garcia Quiroz

    Felipe Garcia Quiroz

    Felipe Quiroz

    Assistant Professor

    Felipe trained as a biomedical engineer in his native Colombia before obtaining a PhD from the Biomedical Engineering department of Duke University. At Duke, working in the laboratory of Ashutosh Chilkoti, he focused on the engineering of genetically-encoded, self-assembling protein polymers. An important outcome of this PhD work was the elucidation of sequence rules to program the phase separation behavior of intrinsically disordered proteins (IDPs). Motivated by a newly acquired ability to engineer the phase behavior of IDPs, for his postdoctoral work he turned to their poorly-understood biology. To pursue skin as an outstanding biological system, Felipe joined the group of Elaine Fuchs at Rockefeller University. Felipe’s postdoctoral research led to the discovery that liquid-liquid phase separation drives the process of skin barrier formation. In 2020, he established the Quiroz Lab in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, where he is currently an Assistant Professor. Felipe is the recipient of multiple research awards, including a Career Award at the Scientific Interface from the Burroughs Wellcome Fund and the NIH Director’s New Innovator Award.


    404-251-5435

    Office Location:
    Health Sciences Research Building, Room E184 (Emory)

    Website

  • Coulter Department of Biomedical Engineering
  • Coulter Department of Biomedical Engineering
  • Google Scholar

    Research Focus Areas:
    • Biomaterials
    • Drug Design, Development and Delivery
    • Molecular, Cellular and Tissue Biomechanics
    • Regenerative Medicine
    • Systems Biology

    IRI Connections:

    Britney Schmidt

    Britney Schmidt

    Britney Schmidt

    Associate Professor; School of Earth and Atmospheric Sciences, Cornell University

    My primary interest is floating ice systems - Jupiter's moon Europa and Earth's ice shelves. I am interested in how these environments work and how they may become habitable. I have chosen to focus on Europa because of its potential to have what other places may not have: a stable source of energy from tides that can power geological cycles over the lifetime of the solar system. At its most basic form, life is like a battery, depending upon redox reactions to move electrons. A planetary proxy for this is activity, whereby a planet recycles through geologic processes, and maintains chemical gradients of which life can take advantage. Without recycling, it is possible that even once habitable environments can become inhospitable. This is where terrestrial process analogs come into the picture - by studying how ice and water interact in environments on Earth we can better understand the surface indications of such on Europa (and other icy worlds). My work provides a framework by which to remotely understand planetary cryospheres and test hypotheses, until such time as subsurface characterization becomes possible by radar sounding, landed seismology, or one day, roving submersibles. Much work remains to correlate observations and models of terrestrial icy environments - excellent process analogs for the icy satellites - with planetary observations. I think about how to incorporate melting, hydrofracture, hydraulic flow, and now brine infiltration as process analogs into constructing models for the formation of Europa's geologic terrain and to study the implications for ice shell recycling and ice-ocean interactions. The inclusion of realistic analogs in our backyard-Earth's poles -using imaging and geophysical techniques is a common thread of this work, giving tangible ways to generate and test hypotheses relevant to environments on Earth and Europa. In the long term, I envision constructing systems-science level models of the Europan environment to understand its habitability and enable future exploration. I'm lucky to work with a talented group of students, post docs, and collaborators who share this vision and continue to make my life's passion, understanding the worlds around us, tenable.

    britney.schmidt@eas.gatech.edu

    404.385.1869

    Office Location:
    ES&T 2236

    The Planetary Habitability and Technology Lab at Cornell University

    Google Scholar

    Research Focus Areas:
    • Autonomy
    Additional Research:
    Planetary Science; Astrobiology; Cryosphere

    IRI Connections: