Shella Keilholz

Shella Keilholz

Shella Keilholz

Associate Professor

Dr. Keilholz has been working in preclinical imaging for more than twenty years, with the goal of using animal models to improve the analysis of human MRI imaging. Her research uses multimodal approaches to extract information about neural dynamics from functional neuroimaging studies.

sk233@mail.gatech.edu

404-727-2433

Office Location:
Emory, HSRB W230

Website

Google Scholar

Research Focus Areas:
  • Neuroscience
Additional Research:
The goal of my research is to develop a method for mapping spontaneous activity throughout the whole brain with high spatial and temporal resolution, with the intention of using this technique to characterize alterations in dynamic neural activity linked to dysfunction and to identify potential targets for intervention. My primary expertise is in fMRI and functional connectivity mapping, and since my lab was established at Emory, we have focused on obtaining information about the dynamic activity of functional networks from the BOLD signal. Despite BOLD's indirect relationship to neural signals, evidence is growing that the BOLD fluctuations provide information about behaviorally relevant network activity. We take a two-pronged approach to the problem, combining MRI with direct neural measures like electrophysiology and optical imaging in the rodent, or with EEG and behavioral outputs in the human. Our effort to understand the relationship between BOLD and electrical or optical recordings (very different signals that cover very different spatial and temporal scales) has led us to develop new approaches to data analysis that include spectral, spatial, and temporal information. To better understand the large-scale dynamics of brain activity, we have become fluent in network modeling, nonlinear dynamics, and machine learning.

IRI Connections:

Anant Paravastu

Anant Paravastu

Anant Paravastu

Associate Professor

Anant Paravastu holds bachelors (MIT, 1998) and Ph.D. degrees (UC Berkeley, 2004) in chemical engineering. His Ph.D. research with Jeffrey Reimer focused on the use of lasers to control nuclear spin polarizations in the semiconductor GaAs. From 2004 to 2007, he worked as a postdoc at the Laboratory of Chemical Physics at NIH with Robert Tycko, where he learned to apply nuclear magnetic resonance to structural biology. Paravastu’s early structural biology work focused amyloid fibrils of the Alzheimer’s β-amyloid peptide. He was part of the team and community that showed that amyloid fibril formation is a complex phenomenon, with individual peptides exhibiting multiple aggregation pathways capable of producing multiple distinct aggregated structures. Between 2008 and 2015, Paravastu worked as an assistant professor at Florida State University and the National High Magnetic Field Laboratory. Paravastu started his present position at Georgia Tech in 2015. Paravastu’s laboratory presently focuses on 3 general lines of inquiry: 1) structural analysis of peptides that were rationally designed to assemble into nanostructured materials, 2) nonfibrillar aggregates of the Alzheimer’s β-amyloid peptide, and 3) aggregation due to misfolding of proteins driven away from their natural folds.

anant.paravastu@chbe.gatech.edu

404-385-4604

Office Location:
MoSE 4100N

  • Related Site
  • Google Scholar

    Research Focus Areas:
    • Regenerative Medicine
    Additional Research:
    Solid state NMR structural biology of self-assembled peptides and proteins Self-assembly of the Alzheimer's beta-amyloid peptide Designer self-assembling peptides for applications in regenerative medicine

    IRI Connections:

    Jonathan Stiles

    Jonathan Stiles

    Jonathan Stiles

    Professor, Microbiology, Biochemistry & Immunology

    Graduate
    University of Salford
    Degree: Doctor of Philosophy

    Undergraduate
    University of Ghana
    Degree: Bachelor of Science

    Research Interests

    Molecular pathogenesis of neglected diseases that affect the central nervous system (CNS) with emphasis on cerebral malaria and African trypanosomiasis ("Sleeping Sickness")


    Our research is focused on three main areas; a) Understanding pathogen-induced brain encephalopathy, and b) Research and development of anti-parasitic drugs and c) Understanding immunopathogenesis of Sickle Cell Disease
    Pathogen-induced brain neuropathy (Cerebral malaria & African Trypanosomiasis). In collaboration with the Neuroscience Institute here at MSM, Queens College, NY, University of Ghana Medical School, and CDC, Atlanta, GA, we are studying the role of cerebral malaria (CM) and African trypanosomiasis (HAT) in brain neuropathy. Both diseases impact the central nervous system and result in diffuse encephalopathy in the infected. The encephalopathy associated with malaria for example is associated with 10-14% of mortality with an estimated annual death of 1-2.5 million annual deaths globally. The molecular mechanisms controlling these outcomes are unclear. Current studies ignore malaria-induced gross neurological defects and the impact of this disease on learning, cognitive function and neuro-psychology. The absence of effective vaccines or drugs to protect against these diseases coupled with the increasing drug resistance has resulted in the re-emergence of malaria and trypanosomiasis in the tropics and subtropics. We are employing bio-informatics, functional genomics, and proteomics in human and mouse disease models to study the role of immunomodulators, apoptosis, and signaling factors in CM and HAT-induced brain pathology.

    Research & Development of anti-parasitic drugs. In collaboration with Yale University, University of Mississippi Medical Center, (UMC), and Noguchi Medical Research Institute in Ghana, we are targeting cation homeostasis mechanisms of trypanosomes during infection. Millions of Latin Americans infected with Trypanosoma cruzi (Chagas disease) suffer chronic splenomegaly, cardiac myopathy and megacolonitis while millions are at risk of infection with African trypanosomes (HAT) in Africa. HIV infection exacerbates susceptibility to and further complicates malaria and HAT. Available drugs are very toxic while supplies are precariously low. We are targeting cation pumps (cation ATPases) utilized by trypanosomes for uptake of nutrients, as well as for regulating cell volume and intracellular pH as drug targets. Blocking these ion pumps by specific drugs or antibodies inhibit proliferation of these parasites in vitro and in their hosts. By understanding parasite ion homeostasis during infection, we hope that novel strategies to intervene by drugs may be developed.

    Genomics & Immunopathogenesis of Sickle Cell Disease SCD. In collaboration with Drs. Adamkiewicz, Hibbert, Gee, and Buchanan at Morehouse School of Medicine, we provide postdoctoral research training in various aspects of sickle cell disease (SCD) immuno-pathogenesis in human and murine models. SCD and other hemoglobinopathies are responsible for significant morbidity and mortality among people of African, Mediterranean and South Asian descent.

    jstiles@msm.edu

    (404) 752-1585

    University, College, and School/Department

    IRI Connections:

    Amirali Aghazadeh

    Amirali Aghazadeh

    Amirali Aghazadeh

    Assistant Professor

    Amirali Aghazadeh is an Assistant Professor in the School of Electrical and Computer Engineering and also program faculty of Machine Learning, Bioinformatics, and Bioengineering Ph.D. programs. He has affiliations with the Institute for Data Engineering and Science (IDEAS) and Institute for Bioengineering and Biosciences. Before joining Georgia Tech, Aghazaeh was a postdoc at Stanford and UC Berkeley and completed his Ph.D. at Rice University. His research focuses on developing machine learning and deep learning solutions for protein and small molecular design and engineering.
     

    aaghazadeh3@gatech.edu

    713-257-5758

    Office Location:
    CODA S1209

    Profile Page

    Google Scholar

    Research Focus Areas:
    • Algorithms & Optimizations
    • Big Data
    • Bioengineering
    • Bioinformatics
    • Biotechnology
    • Computational Genomics
    • Computational Materials Science
    • Diagnostics
    • Drug Design, Development and Delivery
    • Machine Learning
    • Systems Biology

    IRI Connections:

    Felipe Garcia Quiroz

    Felipe Garcia Quiroz

    Felipe Quiroz

    Assistant Professor

    Felipe trained as a biomedical engineer in his native Colombia before obtaining a PhD from the Biomedical Engineering department of Duke University. At Duke, working in the laboratory of Ashutosh Chilkoti, he focused on the engineering of genetically-encoded, self-assembling protein polymers. An important outcome of this PhD work was the elucidation of sequence rules to program the phase separation behavior of intrinsically disordered proteins (IDPs). Motivated by a newly acquired ability to engineer the phase behavior of IDPs, for his postdoctoral work he turned to their poorly-understood biology. To pursue skin as an outstanding biological system, Felipe joined the group of Elaine Fuchs at Rockefeller University. Felipe’s postdoctoral research led to the discovery that liquid-liquid phase separation drives the process of skin barrier formation. In 2020, he established the Quiroz Lab in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, where he is currently an Assistant Professor. Felipe is the recipient of multiple research awards, including a Career Award at the Scientific Interface from the Burroughs Wellcome Fund and the NIH Director’s New Innovator Award.


    404-251-5435

    Office Location:
    Health Sciences Research Building, Room E184 (Emory)

    Website

  • Coulter Department of Biomedical Engineering
  • Coulter Department of Biomedical Engineering
  • Google Scholar

    Research Focus Areas:
    • Biomaterials
    • Drug Design, Development and Delivery
    • Molecular, Cellular and Tissue Biomechanics
    • Regenerative Medicine
    • Systems Biology

    IRI Connections:

    Britney Schmidt

    Britney Schmidt

    Britney Schmidt

    Associate Professor; School of Earth and Atmospheric Sciences, Cornell University

    My primary interest is floating ice systems - Jupiter's moon Europa and Earth's ice shelves. I am interested in how these environments work and how they may become habitable. I have chosen to focus on Europa because of its potential to have what other places may not have: a stable source of energy from tides that can power geological cycles over the lifetime of the solar system. At its most basic form, life is like a battery, depending upon redox reactions to move electrons. A planetary proxy for this is activity, whereby a planet recycles through geologic processes, and maintains chemical gradients of which life can take advantage. Without recycling, it is possible that even once habitable environments can become inhospitable. This is where terrestrial process analogs come into the picture - by studying how ice and water interact in environments on Earth we can better understand the surface indications of such on Europa (and other icy worlds). My work provides a framework by which to remotely understand planetary cryospheres and test hypotheses, until such time as subsurface characterization becomes possible by radar sounding, landed seismology, or one day, roving submersibles. Much work remains to correlate observations and models of terrestrial icy environments - excellent process analogs for the icy satellites - with planetary observations. I think about how to incorporate melting, hydrofracture, hydraulic flow, and now brine infiltration as process analogs into constructing models for the formation of Europa's geologic terrain and to study the implications for ice shell recycling and ice-ocean interactions. The inclusion of realistic analogs in our backyard-Earth's poles -using imaging and geophysical techniques is a common thread of this work, giving tangible ways to generate and test hypotheses relevant to environments on Earth and Europa. In the long term, I envision constructing systems-science level models of the Europan environment to understand its habitability and enable future exploration. I'm lucky to work with a talented group of students, post docs, and collaborators who share this vision and continue to make my life's passion, understanding the worlds around us, tenable.

    britney.schmidt@eas.gatech.edu

    404.385.1869

    Office Location:
    ES&T 2236

    The Planetary Habitability and Technology Lab at Cornell University

    Google Scholar

    Research Focus Areas:
    • Autonomy
    Additional Research:

    Planetary Science; Astrobiology; Cryosphere


    IRI Connections:

    Robert Guldberg

    Robert Guldberg

    Robert Guldberg

    Vice President and Robert and Leona DeArmond Executive Director
    Adjunct Professor

    Robert E. Guldberg is the DeArmond Executive Director of the Phil and Penny Knight Campus for Accelerating Scientific Impact and Vice President of the University of Oregon. Guldberg’s research is focused on musculoskeletal mechanobiology, regenerative medicine, and orthopaedic medical devices. Over his 25+ year academic career, Dr. Guldberg has produced over 280 peer-reviewed publications, served as an advisor and board member for numerous biotechnology companies, and co-founded six start-ups. He was previously executive director of the Parker H. Petit Institute for Bioengineering and Bioscience at Georgia Tech from 2009-2018. In 2018, he was selected from a national search to lead the Knight Campus as its inaugural permanent Executive Director, where he has led the creation of its strategic plan, hired faculty into the campus’ first building opened in 2020, and launched the University of Oregon’s first ever engineering degree program. In 2021, he led the launch of Phase 2 of the Knight Campus development with the announcement of a second $500 million gift from Phil and Penny Knight. At the national level, Dr. Guldberg is past Chair of the Americas Chapter of the Tissue Engineering and Regenerative Medicine International Society (TERMIS-AM). He currently serves on the Executive Leadership Council of the Wu Tsai Human Performance Alliance, a $220 million global initiative to promote wellness and peak performance through scientific discovery and innovation. Dr. Guldberg is an elected fellow of TERMIS, the American Society of Mechanical Engineers (ASME), the American Institute for Medical and Biological Engineering (AIMBE), the Orthopaedic Research Society (ORS), and the National Academy of Inventors (NAI).

    robert.guldberg@me.gatech.edu

    541-346-3110

  • https://accelerate.uoregon.edu/robert-guldberg
  • Google Scholar

    Research Focus Areas:
    • Biomaterials
    • Chemical Biology
    • Drug Design, Development and Delivery
    • Molecular, Cellular and Tissue Biomechanics
    • Regenerative Medicine
    Additional Research:
    Guldberg's research interests focus on musculoskeletal growth and development, functional regeneration following traumatic injury, and degenerative diseases, including skeletal fragility and osteoarthritis. His research is supported by the NIH, NSF, DoD, and several biotechnology companies and has resulted in over 150 book chapters and publications. Guldberg is a Fellow of the American Institute for Medical and Biological Engineering (AIMBE) and holds several national leadership positions.

    IRI Connections:

    Francesca Storici

    Francesca Storici

    Francesca Storici

    Professor

    Francesca Storici was born in Trieste, Italy. She graduated in Biology from the University of Trieste. Her Ph.D. in Molecular Genetics was conferred by the International School for Advanced Studies (SISSA), in Trieste in 1998, and she conducted research at the International Centre for Genetic Engineering and Biotechnology (ICGEB) in Trieste. From 1999 to 2007 she was an NIH postdoctoral fellow in the Laboratory of Molecular Genetics under the guidance of Dr. Michael A. Resnick at the National Institute of Environmental and Health Sciences (NIEHS, NIH) in the Research Triangle Park of North Carolina, USA. In 2007 she was a Research Assistant Professor at the Gene Therapy Center of the University on North Carolina at Chapel Hill with Dr. R. Jude Samulski. Francesca joined the faculty of the School of Biological Sciences at Georgia Tech in 2007 and received the title of Distinguished Cancer Scientist of the Georgia Research Alliance. She is currently a professor in the School of Biological Sciences at Georgia Tech. Her research is on genome stability, DNA repair and gene targeting.

    francesca.storici@biology.gatech.edu

    404-385-3339

    Office Location:
    EBB 5017

    Website

  • http://biosciences.gatech.edu/people/francesca-storici
  • Google Scholar

    Research Focus Areas:
    • Cancer Biology
    • Drug Design, Development and Delivery
    Additional Research:
    Ribonucleotides embedded in DNA, RNA-driven DNA repair and modifications, mechanisms of genomic stability/instability, gene targeting and genome engineering.

    IRI Connections: