Chloé Arson

Chloé Arson

Chloe Arson

Adjunct Professor

Chloé Arson is a professor in the School of Civil and Environmental Engineering (CEE) at Cornell University and an adjunct faculty in the Schools of CEE and Earth and Atmospheric Sciences at the Georgia Institute of Technology (Georgia Tech). She earned her Ph.D. at Ecole Nationale des Ponts et Chaussées (France) in 2009. She was an assistant professor at Texas A&M University from 2009 to 2012. Then, she worked as an assistant professor (2012-2016), associate professor (2016-2022) and professor (2022-2023) in the Georgia Tech School of CEE. Arson joined the faculty at Cornell University in Summer 2023.

chloe.arson@ce.gatech.edu

404.385.0143

CEE Profile Page

Research Focus Areas:
  • Computational Materials Science
  • Geosystems
Additional Research:
Numerical modeling, geomaterials, bio-inspired materials

IRI Connections:

Mike Leamy

Mike  Leamy

Mike Leamy

Associate Professor

michael.leamy@me.gatech.edu

(404) 385.2828

Website

Google Scholar

University, College, and School/Department
Research Focus Areas:
  • Energy Utilization and Conservation
  • Materials and Nanotechnology
Additional Research:
Electric Vehicles; Acoustics and Dynamics; computational mechanics; Multiscale Modeling; Nanostructured Materials; Metamaterials

IRI Connections:

Bernard Kippelen

Bernard Kippelen

Bernard Kippelen

Professor, School of Electrical and Computer Engineering
Director, Center for Organic Photonics and Electronics
Vice Provost for International Initiatives
Steven A. Denning Chair for Global Engagement

Bernard Kippelen was born and raised in Alsace, France. He studied at the University Louis Pasteur in Strasbourg where he received a Maitrise in Solid-State Physics in 1985, and a Ph.D. in Nonlinear Optics in 1990. From 1990 to 1997 he was Charge de Recherches at the CNRS, France. In 1994, he joined the faculty of the Optical Sciences Center at the University of Arizona. There, he developed a research and teaching program on polymer optics and plastic electronics. In August 2003, Dr. Kippelen joined the School of Electrical and Computer Engineering at the Georgia Institute of Technology where his research ranges from the investigation of fundamental physical processes (nonlinear optical activity, charge transport, light harvesting and emission), to the design, fabrication and testing of light-weight flexible optoelectronic devices and circuits based on nanostructured organic materials. He currently serves as director of the Center for Organic Photonics and Electronics, and as co-president of the Lafayette Institute, a major optoelectronics commercialization initiative that is based at Georgia Tech-Lorraine in Metz, France. He currently holds 25 patents and has co-authored over 270 refereed publications and 14 book chapters. His publications have received over 20,000 citations and his h-index is 73 (Google Scholar). He served as chair and co-chair of numerous international conferences on organic optoelectronic materials and devices and as deputy editor of Energy Express. He was the founding editor of Energy Express.

bernard.kippelen@ece.gatech.edu

404.385.5163

Office Location:
MoSE 4239

ECE Profile Page

  • Kippelen Group
  • Google Scholar

    Research Focus Areas:
    • Biobased Materials
    • Biochemicals
    • Biorefining
    • Biotechnology
    • Flexible Electronics
    • Miniaturization & Integration
    • Optics & Photonics
    • Pulp Paper Packaging & Tissue
    • Renewable Energy
    • Sustainable Manufacturing
    Additional Research:
    Photovoltaics; Organic Photonics and Electronics; Integrated Photonics; Flexible Electronics; Optical Materials; Nanocellulose Applications; Films & Coatings; Sustainable Manufacturing; Biomaterials

    IRI Connections:

    Krista Walton

    Krista Walton

    Krista Walton

    Professor, School of Chemical and Biomolecular Engineering
    Robert "Bud" Moeller Faculty Fellow, School of Chemical and Biomolecular Engineering
    Associate Dean for Research and Innovation, College of Engineering

    Krista S. Walton is the Associate Dean for Research & Innovation in the College of Engineering and Professor and Robert "Bud" Moeller Faculty Fellow in the School of Chemical and Biomolecular Engineering at Georgia Tech. She received her B.S.E. in chemical engineering from the University of Alabama-Huntsville in 2000 and obtained her Ph.D. in chemical engineering from Vanderbilt University in 2005, working with Prof. M. Douglas LeVan. Prof. Walton completed an ACS PRF Postdoctoral Fellowship at Northwestern University in 2006 under the direction of Prof. Randall Snurr.

    Her research program focuses on the design, synthesis, and characterization of functional porous materials for use in adsorption applications including carbon dioxide capture and air purification. She has published > 80 peer-reviewed articles and presented dozens of plenary lectures and invited seminars. Prof. Walton currently serves as an Associate Editor for the ACS Journal Industrial & Engineering Chemistry Research, and is the Director and Lead PI of Georgia Tech’s DOE Energy Frontier Research Center, UNCAGE-ME. Prof. Walton’s accomplishments have been recognized by many prestigious awards including the inaugural International Adsorption Society Award for Excellence in Publications by a Young Member of the Society (2013) and the Presidential Early Career Award for Scientists and Engineers (2008).

    krista.walton@chbe.gatech.edu

    404.894.5254

    Office Location:
    Bunger-Henry 421

    Nanomaterials & Adsorption Lab

  • ChBE Profile Page
  • Research Focus Areas:
    • Aerogels & Hydrogels
    • Biochemicals
    • Carbon Capture
    • Catalysis
    • Energy & Water
    • Environmental Processes
    • Materials for Energy
    • Separation Technologies
    Additional Research:
    CO2 Capture; Climate Change Mitigation; Metal-Organic Frameworks; Separation Membranes; Biofuels; Carbon Capture; Catalysis; Separations Technology; Environmental Processes; Energy & Water; Separation Technologies; Aerogels & Hydrogels; Biochemicals

    IRI Connections:

    David S. Sholl

    David S.  Sholl

    David S. Sholl

    Professor, School of Chemical and Biomolecular Engineering

    Sholl’s research focuses on materials whose macroscopic dynamic and thermodynamic properties are strongly influenced by their atomic-scale structure. Much of this research involves applying computational techniques such as molecular dynamics, Monte Carlo simulations and quantum chemistry methods to materials of interest. Although the group's work is centered on computational methods, it involves extensive collaboration with experimental groups and industrial partners.

    david.sholl@chbe.gatech.edu

    404.894.2822

    Office Location:
    ES&T 2214

    ChBE Profile Page

  • Sholl Research Group
  • Google Scholar

    Research Focus Areas:
    • Biobased Materials
    • Biochemicals
    • Biorefining
    • Computational Materials Science
    • Fuels & Chemical Processing
    • Pulp & Paper Manufacturing
    • Sustainable Manufacturing
    Additional Research:
    Metal-Organic Frameworks; Separation Membranes; Separations Technology; Carbon Capture; Hydrogen; SMART Manufacturing; Sustainable Manufacturing; Biochemicals

    IRI Connections:

    Donald White

    Donald White

    Donald White

    Professor, School of Civil and Environmental Engineering

    Don White is a professor in the School of Civil and Environmental Engineering (CEE). He has been a member of the CEE faculty at Georgia Tech since 1997. Prior to joining Georgia Tech, White served on the faculty at the Purdue University School of Civil Engineering from 1987 to 1996. He received his doctorate in Structural Engineering from Cornell University in 1988, and is an alumnus of North Carolina State University. Prior to graduate study, White worked as a structural engineer in Raleigh, NC.

    White’s research covers a broad area of design and behavior of steel and composite steel-concrete structures as well as computational mechanics, methods of nonlinear analysis and applications to design. White is a member of the AISC Technical Committees 4, Member Design, and 10, Loads, Analysis and Stability, the AISI Bridge Design Advisory Group, the AISC Specification Committee, and several AASHTO/NSBA Steel Bridge Collaboration Task Groups. He is past Chair of the SSRC Task Group 29, Second-Order Inelastic Analysis of Frames and currently serves on the Executive Committee of the SSRC.

    White has served as a major contributor to the steel design and structural analysis sections of the AASHTO LRFD Bridge Design Specifications and the ANSI/AISC Specification for Structural Steel Build­ings during the past 20 years. He was a lead author on the 1997 ASCE publication Effective Length and Notional Load Approaches for Assessing Frame Stability: Implications for American Steel Design, which was a precursor of the development of the AISC Direct analysis Method of design, referred to as the DM. Furthermore, White was a major participant ad hoc task group efforts leading to the development of the DM, which is the preferred method of stability design in the AISC Specification for Design of Steel Building Structures. Subsequent to these developments, the Metal Building Manufacturers Association (MBMA) provided White the opportunity to extend a number of these developments to updated procedures for design of frames using web-tapered members, which is captured within the AISC/MBMA Design Guide 25. White received the 2005 Special Achievement Award and the 2009 T.R. Higgins lectureship award from AISC for his research on design criteria for steel and composite steel-concrete members in bridge and building construction. He received the 2006 Shortridge Hardesty Award from ASCE for his research on advanced frame stability concepts and practical design formulations. For efforts leading to the comprehensive update to the 2005 AASHTO LRFD provisions for steel I- and box-girder bridge design, and unification of AASHTO LRFD provisions for straight and curved girder bridge design, White received the 2007 Richard S. Fountain Bridge Task Force Award and, with M. Grubb and W. Wright, the 2006 Richardson Medal from the Engineers’ Society of Western Pennsylvania.

    White has conducted research on a wide range of topics relating to stability analysis and design and construction engineering of steel bridge structures. This includes work on construction simulation of curved and skewed steel bridges, investigation of the behavior of thin-web girders, and stability of components and structural systems during construction and in their final constructed condition. He was one of several researchers privileged to be involved closely with curved steel bridge experimental testing at the FHWA Turner Fairbank Highway Research Center from 1997 through 2005. White was P.I. and lead author of the NCHRP Report 725, Guidelines for Analytical Methods and Construction Engineering of Curved and Skewed Steel Girder Bridges. This work contributed additional substantive advances to the state-of-the-art in the engineering of curved and skewed steel girder bridge structures. White is currently P.I. on a multi-year FHWA-sponsored effort with the goal of modernizing the AASHTO LRFD provisions pertaining to all types of noncomposite box-section members including truss members, edge girders in cable-stayed spans, arch ribs, arch ties, and tower legs.

    don.white@ce.gatech.edu

    404.894.5839

    Office Location:
    Mason 5139B

    CEE Profile Page

    Google Scholar

    Research Focus Areas:
    • Computational Materials Science
    Additional Research:
    Computer-Aided Engineering; computational mechanics; Structural Materials

    IRI Connections:

    Phanish Suryanarayana

    Phanish Suryanarayana

    Phanish Suryanarayana

    Associate Professor, School of Civil and Environmental Engineering

    Phanish Suryanarayana joined the School of Civil and Environmental Engineering at the Georgia Institute of Technology in August 2011. He received his B.Tech. from Indian Institute of Technology, Madras, India in 2005. He obtained his M.S. in Aeronautics from California Institute of Technology in 2006. Subsequently, he received his Ph.D. in Aeronautics from California Institute of Technology in 2011 for his thesis titled "Coarse-graining Kohn-Sham Density Functional Theory". His research interests are in the areas of multiscale modeling, ab-initio calculations, density functional theory, continuum mechanics and smart materials. Overall, he is interested in developing efficient numerical methods for solving problems arising in a variety of fields. On a personal level, Dr. Suryanarayana is a sports enthusiast. He plays badminton, cricket, waterpolo, and ultimate frisbee. He also is an avid gamer (PC) and enjoys playing bridge and other board game

    phanish.suryanarayana@ce.gatech.edu

    404.894.2773

    Office Location:
    Mason 5139A

    CEE Profile Page

  • Material Physics & Mechanics Group
  • Google Scholar

    Research Focus Areas:
    • Computational Materials Science
    • Use & Conservation
    Additional Research:
    Computational mechanics; Multiscale Modeling; Metamaterials; Electronics

    IRI Connections:

    Alenka Zajić

    Alenka Zajić

    Alenka Zajić

    Ken Byers Professor, School of Electrical and Computer Engineering

    Alenka Zajic is currently the Ken Byers Professor in the School of Electrical and Computer Engineering at the Georgia Institute of Technology. She has received the B.Sc. and M.Sc. degrees from the University of Belgrade, Belgrade, Serbia, in 2001 and 2003, respectively, and the Ph.D. degree in electrical and computer engineering from the Georgia Institute of Technology, Atlanta, in 2008. Before joining Georgia Tech as an assistant professor, Zajic was a post-doctoral fellow in the Naval Research Laboratory and visiting faculty in the School of Computer Science at the Georgia Institute of Technology. Zajic is the recipient of the following awards: IEEE Atlanta Section Outstanding Engineer Award (2019), The Best Poster Award at the IEEE International Conference on RFID (2018), NSF CAREER Award (2017), Best Paper Award at the 49th Annual IEEE/ACM International Symposium on Microarchitecture (2016), the Best Student Paper Award at the IEEE International Conference on Communications and Electronics (2014), Neal Shepherd Memorial Best Propagation Paper Award (2012), the Best Paper Award at the International Conference on Telecommunications (2008), the Best Student Paper Award at the Wireless Communications and Networking Conference (2007), IEEE Outstanding Chapter Award as a Chair of the Atlanta Chapter of the AP/MTT Societies (2016), LexisNexis Dean's Excellence Award (2016), and Richard M. Bass/Eta Kappa Nu Outstanding Teacher Award (2016). She was an editor for IEEE Transactions on Wireless Communications 2012-2017 and an executive editor for Wiley Transactions on Emerging Telecommunications Technologies 2011-2016 .

    alenka.zajic@ece.gatech.edu

    404.556.7149

    Office Location:
    TSRB 415

    ECE Profile Page

  • Electromagnetic Measurements in Communications and Computing (EMC^2)
  • Google Scholar

    Research Focus Areas:
    • Autonomy
    • Cyber Technology
    • Miniaturization & Integration
    Additional Research:
    On-Chip and Off-Chip Interconnects and Communication in Computer Systems; Mobile-to-Mobile Wireless Channel Modeling and Measurements; Underwater Wireless Channel Modeling and Measurements; Electromagnetic Security and Compatibility; Applied Electromagnetics; Wireless Communications

    IRI Connections:

    Christopher Jones

    Christopher Jones

    Christopher Jones

    Professor and John F. Brock III School Chair, School of Chemical and Biomolecular Engineering

    Chris Jones was born in suburban Detroit, Michigan in July of 1973. After his primary and secondary schooling and 14 years living Troy, Michigan, he enrolled as a chemical engineering student at the University of Michigan. In route to earning a BSE in chemical engineering, Chris carried out research on transition metal carbide and nitride catalytic materials under the direction of Levi Thompson. After graduating in 1995, Chris moved to Pasadena, California, to study inorganic materials chemistry and catalysis under Mark E. Davis at Caltech. There he earned M.S. and Ph.D. degrees in chemical engineering in 1997 and 1999, respectively. Subsequently, he studied organometallic chemistry and olefin polymerization under the direction of both Davis and John E Bercaw at Caltech. He started as an assistant professor at Georgia Tech in the summer of 2000 and was promoted to associate professor in July 2005. In May, 2005, he was appointed the J. Carl and Sheila Pirkle Faculty Fellow, followed by a promotion to professor in July 2008. He was named New-Vision Professor of Chemical and Biomolecular Engineering in July 2011. In 2015, he became the Love Family Professor of Chemical and Biomolecular Engineering, and in 2019 the William R. McLain Chair. Chris was named the associate vice president for research at Georgia Tech in November 2013. In this role, he directed 50% of his time on campus-wide research administration with a primary focus on interdisciplinary research efforts and policy related to research institutes, centers and research core facilities. In 2018, he served as the interim executive vice-president for research, before returning full time to his research and teaching roles in chemical and biomolecular engineering in 2019.

    Jones directs a research program focused primarily on catalysis and CO2 separation, sequestration and utilization. A major focus of his laboratory is the development of materials and processes for the removal of CO2 from air, or “direct air capture” (DAC). In 2010 he was honored with the Ipatieff Prize from the American Chemical Society for his work on palladium catalyzed Heck and Suzuki coupling reactions. That same year, he was selected as the founding Editor-in-Chief of ACS Catalysis, a new multi-disciplinary catalysis journal published by the American Chemical Society. In 2013, Chris was recognized by the North American Catalysis Society with the Paul E. Emmett Award in Fundamental Catalysis and by the American Society of Engineering Education with the Curtis W. McGraw Research Award. In 2016 he was recognized by the American Institute of Chemical Engineers with the Andreas Acrivos Award for Professional Progress in Chemical Engineering, distinguishing him as one of the top academic chemical engineers under 45. In 2020, after ten years building and leading ACS Catalysis, he was selected as the founding Editor-in-Chief of JACS Au by an international editorial search committee commissioned by the ACS. Dr. Jones has been PI or co-PI on over $72M in sponsored research in the last seventeen years, and as of December 2020, has published over 300 papers that have been cited >28,000 times. He has an H-Index of 82 (Google Scholar).

    cjones@chbe.gatech.edu

    404.385.1683

    Office Location:
    ES&T 2202

    ChBE Profile Page

  • Jones Group Website
  • Google Scholar

    Research Focus Areas:
    • Fuels & Chemical Processing
    • Materials for Energy
    • Renewable Energy
    Additional Research:
    CO2 capture, catalysis, membrane and separations, separations technology, catalysis, carbon capture, biofuels

    IRI Connections:

    Shu Jia

    Shu Jia

    Shu Jia

    Assistant Professor, Wallace H. Coulter Department of Biomedical Engineering

    We strive to innovate in ways that both advance the imaging science and also impact biological and translational research. We are particularly interested in new imaging physics, bottom-up opto-electronic system design, as well as new principles for light propagation, light-matter interaction and image formation in complex biological materials, especially at the single-molecule level. Toward the application end, we have expertise in a wide range of imaging instrumentation and techniques, such as super-resolution, adaptive optics, light-field, miniaturized, light-sheet, computational microscopy and endoscopy.

    shu.jia@gatech.edu

    404.894.0290

    Office Location:
    UAW 2112

    The Jia Laboratory for Systems Biophotonics

  • BME Profile Page
  • Google Scholar

    Research Focus Areas:
    • Bioengineering
    • Biotechnology
    • Diagnostics
    • Medical Device Design, Development and Delivery
    • Micro and Nano Device Engineering
    • Miniaturization & Integration
    • Optics & Photonics
    Additional Research:
    Single-molecule biophotonicsSuper-resolution imagingAdvanced optical microscopy and instrumentation

    IRI Connections: