Corey Wilson

Corey Wilson

Corey Wilson

Love Family Professor

Biography
Research Interests

Previously an associate professor of chemical & environmental engineering, biomedical engineering, and molecular biophysics and biochemistry at Yale University, Wilson joined Georgia Tech in 2016.   His research group focuses on establishing an integrated experimental and computational framework to translate our understanding of the fundamental principles of biophysics and biochemistry (i.e., the physicochemical properties that confer function) into useful processes, devices, therapies, and diagnostics that will benefit society.
Education
PhD, Rice University

corey.wilson@chbe.gatech.edu

(404) 385-5397

Office Location:
EBB 5014

https://wilson.chbe.gatech.edu/


IRI Connections:

Amanda Stockton

Amanda Stockton

Amanda Stockton

Associate Professor

Education
B.S., Chemistry, Massachusetts Institute of Technology, 2004; B.S., Aerospace Engineering, Massachusetts Institute of Technology, 2004; M.A., Chemistry, Brown University, 2006; Ph.D., Chemistry, University of California Berkeley, 2010

Research
Dr. Stockton joined the School of Chemistry and Biochemistry at the Georgia Institute of Technology in January 2015. Her research plans include (1) instrument development for in situ organic analysis in the search for extraterrestrial life, (2) microfluidic approaches to experimentally evaluating hypotheses on the origin of biomolecules and the emergence of life, and (3) terrestrial applications of these technologies for environmental analysis and point-of-care diagnostics.

astockto@gatech.edu

(404) 894-4090

Office Location:
MoSE 1100K

https://sites.gatech.edu/stocktonlab/

Google Scholar


IRI Connections:

Sharon Sonenblum

Sharon Sonenblum

Sharon Sonenblum

Senior Research Scientist

Educational Experience:
Doctor of Philosophy, December 2009, Georgia Institute of Technology (Bioengineering), Masters of Science, May 2003, Brown University (Bioengineering), Bachelor of Science, May 2002, Brown University (Mechanical Engineering)
Research Interests:
Wheeled mobility and seating, Pressure ulcer prevention and early detection, Assistive technology, Rehabilitation engineering.

sharon.sonenblum@coa.gatech.edu

404-385-0633


IRI Connections:

Anupam Patgiri

Anupam Patgiri

Anupam Patgiri

Assistant Professor

Anupam received his bachelor’s degree from Gauhati University (India) and a master’s degree in chemistry from the Indian Institute of Technology Guwahati (India). He then moved to New York City to pursue a Ph.D. in chemical biology in Prof. Bobby Arora’s lab at NYU. In the Arora lab, Anupam developed chemical inhibitors of therapeutically relevant protein-protein interactions. His thesis project resulted in the discovery of the first direct inhibitor of oncoprotein Ras. Anupam then spent a short stint as a postdoctoral fellow in Prof. Tarun Kapoor’s lab at the Rockefeller University before moving to Prof. Vamsi Mootha’s lab at Harvard Medical School. In the Mootha lab, Anupam engineered an enzyme called “LOXCAT” as a potential therapy for mitochondrial disease. In his independent lab at Emory University, Anupam is developing strategies to restore mitochondrial and metabolic homeostasis in disease as potential therapies. 

Education

Postdoctoral Fellow Harvard Medical School 

Postdoctoral Fellow Rockefeller University 

Ph.D. New York University 

MSc Indian Institute of Technology Guwahati, India

BSc Gauhati University, India  

Awards and Honors

Keystone Symposia Future of Science Fund Scholarship (2020)

Tosteson & Fund Medical Discovery Fellowship (2017)

Helen Hay Whitney Postdoctoral Fellowship (2013-16)

Margaret and Herman Sokol Scholarship at NYU (2010-2011)

GATE fellowship, Govt. of India (2006)

Junior Research Fellowship, Govt. of India (2005)

Summer Research Fellowship, Indian Academy of Sciences (2004)

anupam.patgiri@emory.edu

https://patgirilab.org/

University, College, and School/Department

IRI Connections:

Svjetlana Miocinovic

Svjetlana Miocinovic

Svjetlana Miocinovic

Associate Professor, Departments of Neurology and Biomedical Engineering (Adjunct)

Svjetlana Miocinovic is a board-certified neurologist specializing in Parkinson’s disease, dystonia, tremor and other movement disorders. She graduated from medical school in 2009 at Case Western Reserve University (Cleveland, Ohio) where she also obtained a PhD in biomedical engineering. She completed neurology residency and clinical movement disorders fellowship at University of Texas Southwestern Medical Center (Dallas, Texas). Her post-doctoral training and clinical research fellowship were at the University of California San Francisco Movement Disorder and Neuromodulation Center. In 2016, she joined the Department of Neurology at Emory University (Atlanta, Georgia). Her clinical focus is on using deep brain stimulations (DBS) to treat movement disorders. She also directs an NIH-funded human electrophysiology laboratory and is an investigator with Emory's Udall Parkinson's Disease Research Center of Excellence. The research focus of her laboratory is on electrophysiology of human motor and non-motor circuits, and development of new device-based therapies. 

svjetlana.miocinovic@emory.edu

404.712.9065

Office Location:
Emory Clinic, Fl 5

https://movement.bme.gatech.edu/

Google Scholar


IRI Connections:

Jing Li

Jing Li

Jing Li

Virginia C. and Joseph C. Mello Chair
Professor

Jing Li is a Virginia C. and Joseph C. Mello Chair and Professor in the H. Milton Stewart School of Industrial and Systems Engineering and a core faculty in the Center for Machine Learning at Georgia Tech. Prior to joining Georgia Tech in 2020, she was a Professor at Arizona State University and is a co-founder of the ASU-Mayo Clinic Center for Innovative Imaging.

Dr. Li’s research develops statistical machine learning algorithms for modeling and inference of complex-structured datasets with high dimensionality (e.g., 3D/4D images), multi-modality, and  heterogeneity. The objectives of the methodological developments are to provide capacities for monitoring & change detection, diagnosis, and prediction & prognosis. The application domains mainly include health and medicine, focusing on medical image data analytics as well as fusion of images, genomics, and clinical records for personalized and precision medicine. Her research outcomes support clinical decision making for diagnosis, prognosis, and telemedicine for various conditions affecting the brain, such as brain cancer, post-traumatic headache & migraine, traumatic brain injury, and the Alzheimer’s disease. Her research received Best Paper awards from various professional venues such as IISE Transactions, IISE Annual Conferences, INFORMS Data Mining and Decision Analytics, American Academy of Neurology, America Headache Society, etc. Her research has been funded by the NIH, NSF, DOD, and industries. She is an NSF CAREER Awardee.

Dr. Li is a former Chair for the Data Mining Subdivision of INFORMS. She is currently a Senior Editor for IEEE Transactions on Automation Science and Engineering and a Department Editor for IISE Transactions on Healthcare Systems Engineering.

jli3175@gatech.edu

404.894.6515

Office Location:
Groseclose 331

https://sites.gatech.edu/jing-li/


IRI Connections:

Anthony Law

Anthony Law

Anthony Law

Assistant Professor, Department of Otolaryngology, Head and Neck Surgery

Anthony B. Law, MD, PhD, is an assistant professor in the Department of Otolaryngology at Emory University School of Medicine. A board certified head and neck surgeon, Dr. Law's clinical interest include the diagnosis and treatment of diseases and pathology of the upper aerodigestive tract, particularly laryngeal cancer. He treats disorders involving voice, airway, and swallowing using a wide array of techniques ranging from open surgery, endoscopic minimally invasive surgery, and laser surgery.

Dr. Law earned his MD and also his PhD in biophysics and biochemistry from the University of North Carolina in Chapel Hill, NC. He completed his residency in otolaryngology/head & neck surgery and his fellowship in laryngology at University of Washington in Seattle, WA.

Dr. Law's primary research interests lay in modeling of complex biology and clinical systems. He has broad experience in mathematical modeling and computational models. Historically, he has used machine learning to predict rates and locations of metastasis in head and neck squamous cell carcinoma. His current focus is in applying machine learning to characterize and categorize pathology of the larynx.

anthony.law@emory.edu

(404) 778-0278

University, College, and School/Department

IRI Connections:

Karmella Haynes

Karmella Haynes

Karmella Haynes

Assistant Professor

Many people are familiar with “genetics,” the inheritance of visible traits like eye and hair color. Traits are encoded by a molecular alphabet (A,T,C,G) in the well known double helix structure, DNA. Less well known, but quickly gaining attention, is the network of protein particles that interact with DNA to control the folding of chromosomes and the expression of inherited traits. This process is epi-genetics (epi, EH-pee = upon or above). Our research group uses gene and protein engineering to create new epigenetic machinery that regulates DNA at will. One day synthetic epigenetics may allow us to rationally design new biological systems with predictable, reliable behavior and replace “magic bullet medicine” with “smart medicine.”

We assemble interchangeable protein modules to build synthetic transcription factors that regulate gene activity in human cells. Unlike typical synthetic transcription factors that recognize specific DNA sequences, our Polycomb-based transcription factors (“PcTFs”) are engineered to read chromatin modifications. Thus, a single engineered TF could activate a group of silenced, therapeutic genes in cancer cells. Using strong gene activators could enhance cancer treatment and advance epigenetic medicine.

As synthetic biologists, our goal is to make the folded DNA-protein material, or chromatin (KRO-mah-tin = dark colored material in the nucleus of a fixed and stained cell), easier to design and engineer. Groups of genes often reside in the same compartments, and share the same DNA-protein packaging structures. Therefore, a small artificial change in one packaging protein can reprogram the expression of dozens, and even hundreds of genes. Is this outcome messy and useless, or is it a powerful mode of signal amplification that changes cells in useful ways? To answer this question, our group couples synthetic biology with bioinformatics by interrogating the expression of thousands of genes after we introduce artificial chromatin proteins into cells.

karmella.ann.haynes@emory.edu

404.727.0531

Office Location:
HSRB E154

http://khayneslab.wordpress.com/


IRI Connections: