Paul Russo

Hightower Chair in Biopolymers
Our research involves synthetic and biological polymers and particles in fluids. We are particularly intrigued by disease-inspired materials research: macromolecules and biomaterials strong enough to kill an organism offer special opportunities in materials science. A great example is found in the hydrophobins, which are fungal proteins with very high surface activity. Not only do these small proteins go to surfaces, but once they arrive they form strong membranes that can stabilize sub-millimeter structures in unusual shapes. For example, hydrophobins stabilize cylindrical bubbles. This defies the principle of least surface area, and indicates that the surface-active hydrophobin proteins behave as solids once they equilibrate at the surface. We try to exploit the unusual structures. Another area of research is in synthetic polypeptides, especially when attached to particles. These materials may prove useful in chiral separations, and we believe they offer special opportunities for study of crowded colloidal suspensions. Polyelectrolyte behavior is another research theme and showcases our abilities in polymer characterization, including development of new methods.


Office Location:
MRDC 3508

Departmental Bio

Laboratory Site

Google Scholar

Georgia Institute of Technology

College of Engineering
School of Materials Science and Engineering
Research Focus Areas:
  • Biobased Materials
  • Pulp Paper Packaging & Tissue
  • Biochemicals
  • Biotechnology
  • Biorefining
  • Sustainable Manufacturing
  • Additional Research:
    Biomaterials; Polymers; Colloids; Biomaterials; Nanocellulose Applications; Biocomposites; New Materials; Cellulosic Nanomaterials; Polymer & Fiber

    IRI Connection: