Flicker Stimulation Shines in Clinical Trial for Epilepsy

Annabelle singer in laB

A scientist and her tools: Annabelle Singer has quantified her flicker technology with unprecedented precision in a new clinical trial. — Photo by Jerry Grillo

Biomedical engineer Annabelle Singer has spent the past decade developing a noninvasive therapy for Alzheimer’s disease that uses flickering lights and rhythmic tones to modulate brain waves. Now she has discovered that the technique, known as flicker, also could benefit patients with a host of other neurological disorders, from epilepsy to multiple sclerosis.

Previously, Singer and her collaborators demonstrated that the lights and sounds, delivered to patients through goggles and headphones, have beneficial effects. Flicker has been successful in animal studies and in early human feasibility trials, where it was tested for safety, tolerance, and patient adherence.

Now, thanks to a clinical trial for people with epilepsy, the researchers quantified flicker’s effects with unprecedented precision. They also made an unexpected, but encouraging, discovery: The treatment reduced interictal epileptiform discharges (IEDs) in the brain.

These large, intermittent electrophysiological events are observed between seizures in people with epilepsy. They appear as sharp spikes on an EEG readout.

“What’s interesting about these IEDs is that they don’t just occur in epilepsy,” said Singer, McCamish Foundation Early Career Professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. “They occur in autism, multiple sclerosis, Alzheimer’s, and other neurological disorders, too.” And IEDs disrupt normal brain function, causing memory impairment.

Singer and her team published their findings recently in Nature Communications.

The Rhythm in Our Heads

Inside the brain are elaborate symphonies of electrical activity: brain waves, or oscillations, that compose our memories, thoughts, and emotions. Singer wants to modulate those oscillations for therapeutic purposes. 

At specific frequencies of light and sound, the flicker treatment can induce gamma oscillations in mice. This helps the brain recruit microglia, cells responsible for removing beta amyloid, which is believed to play a central role in Alzheimer’s pathology. Part of the work is in recording what’s happening in the brain during treatment to verify how it’s working.

The patients in the trial were under the care of physician Jon Willie at the Emory University Hospital Epilepsy Monitoring Unit. (Willie, co-corresponding author of the study with Singer, is now at Washington University in St. Louis.) They were awaiting surgery to remove an area of the brain where seizures occur. Before that could happen, they had to undergo intracranial seizure monitoring — recording electrodes are placed in the brain to pinpoint the seizure onset zone and determine exactly which tissue should be removed. Then, patients and their care team wait for a seizure to happen. It can take days.

“In human studies, we’ve used noninvasive methods like functional MRI or scalp EEG, but they have real downsides in terms of resolution,” Singer said. “Working with these patients was a game changer. These are people with treatment-resistant epilepsy, which means that drugs aren’t working for them.”

Pathway to Healing

Singer’s team recruited 19 patients. Lead author of the study, Lou Blanpain, a former Ph.D. student in Singer’s lab and now a medical student at Emory, went from patient to patient with the flicker stimulation and recording equipment.

“Because these patients already had recording probes implanted for clinical reasons, we were able to record directly from the brain,” Singer said. “We’ve never been able to get recordings of this quality during flicker treatment before.”

As the researchers expected, flicker modulated the visual and auditory brain regions that respond strongly to stimuli. But it also reached deeper, into the medial temporal lobe and prefrontal cortex, brain regions crucial for memory. And across the brain, in regions Singer hadn’t fully explored before, she found IEDs were decreasing. 

“That has important implications for whether flicker is therapeutically relevant for people with Alzheimer’s, but also in general if we want to target anything beyond the primary sensory regions,” she said. “All of this points to the potential use of flicker in a lot of different contexts. Going forward, we’re definitely going to look at other conditions and other potential implications.”

 

Citation: Lou T. Blanpain, Eric R. Cole, Emily Chen, James K. Park, Michael Y. Walelign, Robert E. Gross, Brian T. Cabaniss, Jon T. Willie, Annabelle C. Singer. “Multisensory Flicker Modulates Widespread Brain Networks and Reduces Interictal Epileptiform Discharges,” Nature Communications

Funding: National Institutes of Health (R01 NS109226, RF1NS109226, RF1AG078736, R01 MH120194, P41 EB018783, MH12019), DARPA, McCamish Foundation, Packard Foundation.

Competing interests: Annabelle Singer owns shares in Cognito Therapeutics, which aims to develop gamma stimulation-related products. These conflicts are managed by Georgia Tech’s Office of Research Integrity Assurance.

News Contact

Jerry Grillo

Tropical Revelations: Unearthing the Impacts of Hydrological Sensitivity on Global Rainfall

Jie He

Jie He, assistant professor in the School of Earth and Atmospheric Sciences, wants to predict how rainfall will change in the presence of continuing climate change. — Photo by Jerry Grillo

 

Georgia Tech researcher Jie He set out to predict how rainfall will change as Earth’s atmosphere continues to heat up. In the process,  he made some unexpected discoveries that might explain how greenhouse gas emissions will impact tropical oceans, affecting climate on a global scale.

“This is not a story with just one punch line,” said He, assistant professor in Georgia Tech’s School of Earth and Atmospheric Science, whose most recent work appeare in the journal Nature Climate Change. “I didn’t really expect to find anything this interesting —there were a few surprises.”

He is principal investigator of the Climate Modeling and Dynamics Group, which combines expertise in physics, mathematics, and computer science to study climate change. The team’s latest study, a collaboration with Mississippi State University and Princeton University, examines hydrological sensitivity in the planet’s three tropical basins: the central portions of both the Pacific and Atlantic oceans, and most of the Indian Ocean, an equatorial belt girding the Earth between the Tropic of Cancer (north) and Tropic of Capricorn (south).

“Hydrological sensitivity” (HS) refers to the precipitation change per degree of surface warming. Hydrological sensitivity is a key metric researchers use in evaluating or predicting how rainfall will respond to future climate change. Positive HS indicates a wetter climate, while negative HS indicates a drier climate.

“The projection of hydrological sensitivity and future precipitation has been widely investigated, but most studies look at global averages — nobody had yet looked closely at each individual basin,” He said. “And the real impact on global climate change will come from the regional scale.”

In other words, what happens in tropical waters has far-reaching effects.

Long Reach of the Tropics

He wanted to specifically examine the tropical basins because they already have a well-known influence on remote locations: El Niños and La Niñas. These weather patterns that shift every couple of years are examples of tropical oceanic precipitation changes that have a global impact.

“These precipitation changes create heating and cooling in the atmosphere that set off atmospheric waves affecting remote climate across the globe,” He said. During El Niño winters, for example, the Southeastern U.S. typically gets more precipitation than usual.

But El Niños and La Niñas are naturally occurring. Whereas the tropical precipitation changes He identified are projected as outcomes of human-induced global warming — a simulation, part of a climate model.

Climate models are an essential tool for He and other researchers, who use them to simulate possible future scenarios. These are computer programs that rely on complex math equations to project the atmospheric interactions of energy and matter likely to occur across the planet.

What surprised He was the substantial difference in HS between tropical basins. Essentially, in He’s model the Pacific tropical basin has an HS more than twice as large as the Indian basin, with the Atlantic basin projected as a negative value.

“It was surprising because these differences can’t be explained by the mainstream theories on tropical precipitation changes,” He said. “In other words, none of the theories we knew would have predicted it.”

Modeling the Sensitive Future

The effects of such diverging hydrological sensitivity would be widespread, according to He. For example, his experiments suggest that the continental U.S. will get wetter, and the Amazon will become drier.

“If these model projections are true, these effects will materialize as the climate continues to warm,” said He, who can’t predict exactly how long it will be before these effects can be detected in actual observations of our three-dimensional world.

That’s because they only have reliable observations of oceanic tropical precipitation since 1979. Precipitation changes over decades are strongly affected by internal climate variability — that is, climate change that isn’t caused by humans. When human-induced precipitation changes are significantly greater than internal climate variability, we should be able to detect the wide-ranging effects of diverging hydrological sensitivity.

But the challenges of continuing climate change do not allow the luxury of waiting until every aspect of climate projection becomes a reality, He noted, adding, “We are relying on climate projections to some extent to guide our adaptation and mitigation plans. Therefore, it is important to study and understand the climate projections.”

Based on the scenario projected by climate models used in He’s research, the effects of El Niños and La Niñas on remote climates will become stronger.

“What we can imply is that this strengthening would be partly due to the diverging HS among tropical basins,” He concluded.

While the future effects of HS on El Niños and La Niñas weren’t discussed in this study, He believes it would make a very interesting research subject going forward.

 

News Contact

Advancing Careers of Interdisciplinary Research Faculty at Georgia Tech

Close up shot of Tech Tower in the spring with blooming flowers

Growing the careers of research faculty at Georgia Tech is an integral part of Research Next, the strategic plan for the Institute’s research enterprise.

Georgia Tech’s research faculty, who conduct vital research in labs, centers, and departments across campus, play a critical role in the research enterprise. To support these essential employees, Georgia Tech launched an initiative to recognize and develop its research faculty.

The Research Next team, now in the implementation phase of the plan, was tasked with finding ways to recognize, support, and retain research faculty. This included developing reference materials and workshops specifically designed to guide research faculty seeking promotions. These resources provide essential information on the advancement process, ensuring researchers are well-prepared to take the next step in their careers.

With this support and guidance, six researchers from the Interdisciplinary Research Institutes and other units reporting to the Vice President of Interdisciplinary Research applied for promotions. All six promotions were approved.

The following interdisciplinary researchers received promotions:

  • Devin Brown, principal research engineer, Institute for Electronics and Nanotechnology
  • Michael Chang, principal research scientist, Brook Byers Institute for Sustainable Systems
  • Paramita Chatterjee, research scientist II, Marcus Center for Therapeutic Cell Characterization and Manufacturing
  • Evan Goldberg, principal research engineer, Laboratory for Synthetic Immunity and Global Center for Medical Innovation
  • Vrinda Nandan, research scientist II, Design Intelligence Lab and the National AI Institute for Adult Learning and Online Education
  • Sikka Harshvardhan, research scientist II, National AI Institute for Adult Learning and Online Education

In addition, the University System of Georgia’s Board of Regents has granted Leanne West, principal research scientist and the chief engineer of pediatric technologies at Georgia Tech, the prestigious distinction of Regents’ Researcher. As Chief Engineer, West coordinates research activities related to pediatrics across campus and serves as the technical liaison for the partnership with Children’s Healthcare of Atlanta.

West’s research focuses on mobile and wireless health systems and sensor development, user interfaces, system integration, and diagnostic devices. She has seen her invention of a wireless personal captioning system installed at commercial venues through her start-up, Intelligent Access, LLC. She has another wearable system for identifying specific dog behaviors that has also reached the commercial market.

News Contact

Laurie Haigh
Research Communications

Cellular Study Uncovers 'Whole-Body' Impacts of Endurance Exercise

The May 2024 cover of the journal Nature, featuring MoTrPAC findings.

In a group of papers released May 1 in the journal Nature, scientists are one step closer to a whole-body map of the body’s cellular responses to endurance exercise — identifying striking “all tissue effects” of training, even in tissues from organs not normally associated with movement.

The findings are the latest product of the Molecular Transducers of Physical Activity Consortium (MoTrPAC), a ten-year effort launched in 2016 by the National Institutes of Health (NIH) to uncover how exercise improves and maintains our health at the molecular level.

Georgia Institute of Technology bioanalytical chemist Facundo Fernández and Emory University biochemist Eric Ortlund lead one of the Consortium’s Chemical Analysis Sites, joining researchers across the country to collect and translate data from animals and more than 2,000 volunteers into comprehensive maps of the cellular changes throughout the body in response to exercise.

The $226 million MoTrPAC NIH Common Fund investment also hopes to help people with chronic illnesses identify specific physical activities to improve individual health, and to potentially unearth therapeutic targets — medicines that might mimic the positive effects of exercise.

MoTrPAC’s latest group of papers details data from studies in rats, uncovering how endurance exercise affects biological molecules and “all tissues of the body,” as well as tissues and gene expression, along with striking tissue differences between male and female organisms.

Read more:

 

Facundo M. Fernandez, is Regents’ Professor and Vasser Woolley Foundation Chair in Bioanalytical Chemistry at Georgia Tech. He also serves as associate editor of the Journal of the American Society for Mass Spectrometry (JASMS).

Eric Ortlund is a professor in the Department of Biochemistry at Emory University and a member of the Discovery and Developmental Therapeutics Research Program at Winship Cancer Institute.

Study co-authors from Georgia Tech also include David A. Gaul (School of Chemistry and Biochemistry, along with Samuel G. Moore (Petit Institute of Bioengineering and Biosciences). Emory University co-authors also include Tiantian Zhang and Zhenxin Hou (Department of Biochemistry).

 

Funding: The MoTrPAC Study is supported by multiple NIH grants and institutes, as well as the National Science Foundation (NSF), the Knut and Alice Wallenberg Foundation, and NORC at the University of Chicago.

NIH grants include: U24OD026629 (Bioinformatics Center), U24DK112349, U24DK112342, U24DK112340, U24DK112341, U24DK112326, U24DK112331, U24DK112348 (Chemical Analysis Sites), U01AR071133, U01AR071130, U01AR071124, U01AR071128, U01AR071150, U01AR071160, U01AR071158 (Clinical Centers), U24AR071113 (Consortium Coordinating Center), U01AG055133, U01AG055137 and U01AG055135 (PASS/Animal Sites); as well as NHGRI Institutional Training Grant in Genome Science 5T32HG000044; National Heart, Lung, and Blood Institute of the National Institute of Health F32 postdoctoral fellowship award F32HL154711; National Institute on Aging P30AG044271 and P30AG003319.

 

Facundo M. Fernandez and Eric Ortlund
News Contact

Press Contacts:

Jess Hunt-Ralston
Director of Communications
College of Sciences
Georgia Tech

Anthony (Tony) Van Witsen
Health Sciences Writer
Woodruff Health Sciences Center
Emory University

Andréa Harris, Ph.D., M.S.P.H., S.C.P.M.
Health Science Policy Analyst
Office of Strategic Coordination – The Common Fund
Division of Program Coordination, Planning, and Strategic Initiatives
Office of the Director, NIH

Georgia Tech to Offer Ph.D. in Neuroscience and Neurotechnology, New Minor

Georgia Tech (Allison Carter)

The University System of Georgia Board of Regents has approved a new Neuroscience and Neurotechnology Ph.D. Program at Georgia Tech.

The interdisciplinary degree is a joint effort across the Colleges of Sciences, Computing, and Engineering. The program expects to enroll its first graduate students in Fall 2025, pending approval by the Southern Association of Colleges and Schools Commission on Colleges.

The Institute Curriculum Committee has also approved a new Minor in Neuroscience, set to become available in the Georgia Tech 2024-2025 Catalog.

B.S. in Neuroscience

The Ph.D. and Minor offerings build on the recently launched Neuro Next Initiative in Research, and the established Undergraduate Program in Neuroscience, respectively.

Approved by the Board of Regents in 2017, the interdisciplinary B.S. in Neuroscience degree in the College of Sciences enrolled more than 400 undergraduate students in 2022, and has been  the fastest growing undergraduate major at Georgia Tech.

The B.S. in Neuroscience is also key to a strong ecosystem of undergraduate neuroscience education across the state, which includes peer programs at Mercer University, Augusta University, Georgia State University, Agnes Scott College, and Emory University.

Ph.D. in Neuroscience and Neurotechnology

The new doctoral degree will provide a path for the rapidly growing pipeline of in-state neuroscience undergraduate students and young alumni — while also welcoming a wider slate of graduate researchers to campus.

The Ph.D. Program’s mission is focused on educating students to advance the field of neuroscience through an interdisciplinary approach, with scientists and engineers of diverse backgrounds — ultimately integrating neuroscience research and technological development to study all levels of nervous system function.

Biological Sciences Professor Lewis A. Wheaton, who chaired the Ph.D. Program Planning Committee, shares that a cohort model will fuse “experimental and quantitative skill development, creating opportunities for students to work in science and engineering labs to promote collaborations, while also fostering a program and community that’s unique to the state and against national peer offerings.”

Expanding innovation — and impact

Wheaton explains that the new Ph.D. aims to equip graduates for a wide range of employment opportunities and growing specializations, including computational neuroscience, neurorehabilitation, cultural and social neuroscience, neuroimaging, cognitive and behavioral neuroscience, developmental neuroscience, and neurolinguistics.

The new degree will also help meet the country’s growing demand for a neuro-centric workforce. According to the U.S. Bureau of Labor Statistics, job growth for medical scientists (including neuroscientists) tracked around 13% between 2012 and 2022, faster than the average for all tracked occupations.

Wheaton, who also serves as director of the Cognitive Motor Control Lab and director of the Center for Promoting Inclusion and Equity in the Sciences (C-PIES) at Georgia Tech, adds that the program will equip neuroscientists to conduct research that can significantly improve lives.

Seeking students

The Planning Committee anticipates a tentative February 1, 2025 application deadline for Fall 2025 enrollments — and encourages students with the following interests to learn more and apply in the coming school year:

  • Developing deeper quantitative, computing and/or engineering skills to make scientific discoveries that support innovations in neuroscience
  • A clear, comprehensive understanding of the nervous system at all scales from molecular to systems
  • Understanding how to use and innovate new tools and approaches to investigate the nervous system at all levels
  • Becoming uniquely qualified to translate knowledge across neuroscience and related disciplines to create new knowledge in their professional pursuits

Director search

The participating Colleges will soon conduct a search for a program director, engaging a tenured member of the Georgia Tech faculty to serve as the new program’s administrator. A graduate program committee composed of five faculty members and mentors across the Colleges of Sciences, Computing, and Engineering, will also be created.
 

 

During their April 2024 meeting, Regents also announced budget approvals and tuition changes for Georgia's 26 member institutions.

The Ph.D. Program Planning Committee included the following faculty:

  • Lewis Wheaton (Committee Chair, Biological Sciences)
  • Constantine Dovrolis (Computer Science)
  • Christopher Rozell (Electrical and Computer Engineering)
  • Eric Schumacher (Psychology)
  • Garrett Stanley (Biomedical Engineering)
  • David Collard (College of Sciences Office of the Dean)

 

News Contact

Programs:

Press Contact:
Jess Hunt-Ralston
Director of Communications
College of Sciences at Georgia Tech

Neuro Next Initiative:

Sarah Peterson
Program Manager
GT Neuro

Audra Davidson
Research Communications Program Manager
Neuro Next Initiative at Georgia Tech

 

Institute for Electronics and Nanotechnology Builds the Future Microelectronics Workforce

Mikkel Thomas speakers with K-12 Educators during a summer training

When Amy Bonecutter-Leonard was a second-semester undergraduate at the Georgia Institute of Technology, she applied for a work-study job in the cleanroom at the Microelectronics Research Center (MiRC). There, she learned process techniques for making the same type of electronic chips used in cellphones.  

With this new knowledge, she could train and help other students with their research. At the time, Bonecutter-Leonard was a chemical engineering major with no plans to go into microelectronics. Working in the cleanroom changed that. 

“I fell in love with microelectronics through exposure to the research and development work performed in the cleanroom,” she said.  

What started as a student job led to her taking microelectronics classes — and eventually to a career in the field. “My work-study prepared me with hands-on technical skills I would have never learned from just being in a classroom,” she said. Now, Bonecutter-Leonard works as a microelectronics business chief engineer at defense contractor L3Harris Technologies.  

Her story is one of many from the Institute for Electronics and Nanotechnology (IEN, the successor to MiRC), which has been training students from kindergarten to graduate school to be leaders in the microelectronics and nanotechnology space. The goal of IEN’s outreach is to make nanotechnology and microelectronics — such as computer chips and sensors — as accessible as any other science. Ultimately, these efforts will build up the U.S. workforce in the field, ensuring the country remains at the forefront of the technology that powers Americans’ everyday lives. 
 

Building the Workforce 

Bolstering the number of workers in the microelectronics industry is imperative to keep the U.S. globally competitive. Right now, 40% of the industry's labor force is older than 50, with practitioners aging out of their careers at a pace new talent cannot match. Additionally, heavy educational barriers to entry, including required degrees and specialized training, prevent more people from pursuing careers in the field. Without dedicated efforts, the entire sector — and the nation — will fall behind.  

IEN is working to solve this pipeline problem.  

“With the national semiconductor workforce aging, it is important now more than ever that we educate the next generation to move into these jobs,” said Michael Filler, IEN’s interim executive director. “IEN is proud to support the semiconductor industry by providing students with the interdisciplinary skills and hands-on technical training essential for success in this fast-paced, global field.”  

Georgia Tech is uniquely positioned to lead this charge with its 28,500 square feet of academic cleanroom space, the largest in the Southeast and among the largest in the U.S. From micro-electro-mechanical systems to electronics fabrication, workers have 100 bays in which to conduct leading-edge research. These cleanrooms are also key teaching and training facilities. 

IEN invites anyone from around the world, whether affiliated with the Institute or not, to become a core user of the cleanroom facilities. The center also regularly hosts short courses for external partners — academic, industry, and government — in microfabrication and soft lithography for microfluidics. Over the past three years, more than 700 people went through new-user orientation, and 193 enrolled in the short courses. 

Teaching the Next Generation 

Making nanotechnology — of which microelectronics is an example — educationally accessible begins before college. Each semester, more than 800 K-12 students participate in IEN’s Introduction to Nanotechnology virtual lesson. Associate Director for Education and Outreach Mikkel Thomas begins his presentations by asking a simple question: What do you know about nanotechnology? 
 
“About 99% of the time, they say that’s what makes Ironman’s suit work,” said Thomas. “That means they’ve learned the wrong lesson — that nanotechnology is a futuristic tech and that you have to be as smart as Tony Stark to work in the field.  
 
“But most people interact with nanotechnology multiple times throughout their day, and they have no idea they're doing it.” 
 
Thomas also emphasizes there is a career path for everyone, even if they don’t plan to get a traditional four-year degree. Part of IEN’s workforce development initiative is to build up the entire pipeline from industry and research lab technicians at the certificate level to postdoctoral researchers. 
 
“It’s important for us to reach kids who don’t know what career options are available in nanotechnology,” Thomas said. “We want them to know that whatever they're interested in, there is a pathway for them.” 
 
Sixth- through eighth-grade students sparked by this conversation can attend Chip Camp, a three-day STEM summer camp sponsored by Micron. They begin with a day at IEN to learn about thin films, magic sands, ferrofluids, and measuring their height in nanometers. The rest of the camp features hands-on visits to the Materials Characterization Facility (MCF) and the IEN cleanroom, where they can try on the white “bunny suits” technicians wear in the lab. 
 
To further their reach, IEN’s workforce development team collaborates with teachers to bring nanotechnology into classrooms. During the summer, IEN offers the Research Experience for Teachers, a training program for public school and community college teachers to conduct nanotechnology research and learn how to incorporate it into their lessons. Middle school teachers have similar opportunities through the Nanoscience Summer Institute for Middle School Teachers.

Training the Workforce 

When these students get to a university like Georgia Tech, IEN hires them for work-study jobs like the one Bonecutter-Leonard had. The hands-on cleanroom training is also vital to graduate students pursuing advanced degrees. 
 
Katie Young earned her Ph.D. in materials science and engineering at Georgia Tech. Learning her way around the IEN cleanroom was essential for her graduate studies. 
 
“My dissertation research involved synthesizing two-dimensional materials — only a single atom thick — for permeation barriers,” she explained. “I often used the cleanroom’s vacuum systems to synthesize and process 2D materials.” Now a research scientist at the Georgia Tech Research Institute, Young still works in the cleanroom on semiconductor device fabrication, building prototype quantum and biological sensors. 
 
IEN opportunities are not limited to graduate research. Annually, about 150 Georgia Tech undergraduate students take microelectronics packaging and devices classes, with labs taught by IEN staff in the teaching cleanroom. These courses include Integrated Circuit Fabrication (ECE 4452), in which students learn to fabricate circuit elements, and the Science and Engineering of Microelectronic Fabrication (ChBE 4050/6050, open to graduate students as well), for students interested in semiconductor materials and fabrication. 

Students don’t need to enroll at Georgia Tech to benefit from training, courses, and other opportunities. IEN’s internship program provides technical college students with training to become microelectronics technicians, either through work in the Biocleanroom or in the MCF.

Empowering Future Innovators 

IEN also participates in the National Science Foundation Research Experiences for Undergraduates (REU), which provides opportunities for students from underrepresented groups or who attend schools without similar facilities. While enrolled at another university, John Mark Page was introduced to Georgia Tech’s cleanroom through an REU.  
 
“That was my first exposure to any facility of this kind, and it felt like I was looking at the future. Being in a facility that can fabricate devices at or near the atomic level — it was hard to fathom,” Page said. “I had never thought that participating in microelectronics and nanotechnology as a student, especially as an undergraduate, was something I could do.” 

As a result of his REU, Page transferred to Georgia Tech — he will graduate this summer with a bachelor’s degree in electrical engineering. He also completed a second REU at the University of North Carolina at Chapel Hill, worked as a student assistant in the IEN cleanroom, and participated in a Vertically Integrated Project (VIP), Chip Scale Power and Energy
 
“I was interested in the VIP because it allowed me to spend more time in the cleanroom, familiarizing myself with semiconductor fabrication methods and training on new fabrication equipment,” Page explained. His experiences inspired him to consider a future career in the semiconductor industry. 

“It wasn’t only the 10-week experience of the REU that made a lasting impact on me,” he said. “It was also the relationships formed with the people of IEN. The staff there are exceptional representatives of Georgia Tech, and they make IEN a tremendous asset to the future of microelectronics and nanotechnology in the U.S.” 

Biya Haile, an ECE Ph.D. student, had a similarly meaningful REU experience. Haile, whose research focuses on creating micro-electro-mechanical systems-based sensors (MEMS), described the REU as “immersive.” 

“The REU project enabled me to study chemical micro-sensor technologies, as well as state-of-the-art additive nano-manufacturing techniques, which has contributed to my research,” he said. “I feel lucky that my academic journey has entailed developing new technologies that use nanoscience to solve big problems.”  

While Haile is currently focused more on designing and testing rapid processes for fabricating MEMS-based devices, he still occasionally works in the cleanroom on fabrication. He plans to go into the microelectronics industry after graduating. 

The Path Ahead 

All of IEN’s training and educational offerings align with IEN’s mission to bolster and diversify the microelectronics workforce, according to George White, senior director of strategic partnerships for the Georgia Tech research enterprise. “IEN has been at the forefront of the CHIPS infrastructure buildout, particularly in the area of education and workforce development,” he noted.   

IEN’s efforts impact not just Atlanta but the entire country. Georgia Tech’s leadership in microelectronics research trains the innovators and practitioners of the future everywhere and ensures that America stays at the forefront of leading-edge technology. As demand increases for microelectronics, IEN is moving to meet it. 

Effective July 1, 2024, the Institute for Electronics and Nanotechnology and the Institute for Materials will evolve into the Institute for Matter and Systems (IMS). This strategic union aims to foster convergent research at Georgia Tech, focusing on the science, technology, and societal underpinnings of cutting-edge materials and devices. Eric Vogel will be the director of IMS, and Michael Filler will be the deputy director. 

Students pose in bunny suits during Chips Camp.
News Contact

Media Contact: Tess Malone, Senior Research Writer/Editor tess.malone@gatech.edu

 

Physicists Pioneer New Quantum Sensing Platform

Credit: Unsplash

Quantum sensors detect the smallest of environmental changes — for example, an atom reacting to a magnetic field. As these sensors “read” the unique behaviors of subatomic particles, they also dramatically improve scientists’ ability to measure and detect changes in our wider environment.

Monitoring these tiny changes results in a wide range of applications — from improving navigation and natural disaster forecasting, to smarter medical imaging and detection of biomarkers of disease, gravitational wave detection, and even better quantum communication for secure data sharing.

Georgia Tech physicists are pioneering new quantum sensing platforms to aid in these efforts. The research team’s latest study, “Sensing Spin Wave Excitations by Spin Defects in Few-Layer Thick Hexagonal Boron Nitride” was published in Science Advances this week. 

The research team includes School of Physics Assistant Professors Chunhui (Rita) Du and Hailong Wang (corresponding authors) alongside fellow Georgia Tech researchers Jingcheng Zhou, Mengqi Huang, Faris Al-matouq, Jiu Chang, Dziga Djugba, and Professor Zhigang Jiang and their collaborators. 

An ultra-sensitive platform

The new research investigates quantum sensing by leveraging color centers — small defects within crystals (Du’s team uses diamonds and other 2D layered materials) that allow light to be absorbed and emitted, which also give the crystal unique electronic properties. 

By embedding these color centers into a material called hexagonal boron nitride (hBN), the team hoped to create an extremely sensitive quantum sensor — a new resource for developing next-generation, transformative sensing devices. 

For its part, hBN is particularly attractive for quantum sensing and computing because it could contain defects that can be manipulated with light — also known as "optically active spin qubits."

The quantum spin defects in hBN are also very magnetically sensitive, and allow scientists to “see” or “sense” in more detail than other conventional techniques. In addition, the sheet-like structure of hBN is compatible with ultra-sensitive tools like nanodevices, making it a particularly intriguing resource for investigation.

The team’s research has resulted in a critical breakthrough in sensing spin waves, Du says, explaining that “in this study, we were able to detect spin excitations that were simply unattainable in previous studies.” 

Detecting spin waves is a fundamental component of quantum sensing, because these phenomena can travel for long distances, making them an ideal candidate for energy-efficient information control, communication, and processing.

The future of quantum

“For the first time, we experimentally demonstrated two-dimensional van der Waals quantum sensing — using few-layer thick hBN in a real-world environment,” Du explains, underscoring the potential the material holds for precise quantum sensing. “Further research could make it possible to sense electromagnetic features at the atomic scale using color centers in thin layers of hBN.”

Du also emphasizes the collaborative nature of the research, highlighting the diverse skill sets and resources of researchers within Georgia Tech. 

“Within the School of Physics, Professor Zhigang Jiang's research group provided the team with high-quality hBN crystals. Jingcheng Zhou, who is a member of both Professor Hailong Wang’s and my research teams, performed the cutting-edge quantum sensing measurements,” she says. “Many incredible students also helped with this project.”

Du is a leading scientist in the field of quantum sensing — this year, she received a new grant from the U.S. Department of Energy, along with a Sloan Research Fellowship for her pioneering work on developing state-of-the-art quantum sensing techniques for quantum information technology applications. The prestigious Sloan award recognizes researchers whose “creativity, innovation, and research accomplishments make them stand out as the next-generation of leaders in the fields.” 


 

 

DOI: 10.1126/sciadv.adk8495

This work is supported by the U. S. National Science Foundation (NSF) under award No. DMR-2342569, the Air Force Office of Scientific Research under award No. FA9550-20-1-0319 and its Young Investigator Program under award No. FA9550-21-1-0125, the Office of Naval Research (ONR) under grant No. N00014-23-1-2146, NASA-REVEALS SSERVI (CAN No. NNA17BF68A), and NASA-CLEVER SSERVI (CAN No. 80NSSC23M0229).

 

From left to right: Hailong Wang, Jingcheng Zhou, Chunhui (Rita Du)
News Contact

Written by Selena Langner

Contact: Jess Hunt-Raston
Director of Communications
College of Sciences at Georgia Tech

Georgia Tech and Meta Create Massive Open Dataset to Advance AI Solutions for Carbon Capture

A woman with dark hair holds a glass tube filled with white fibers.

A Georgia Tech researcher examines a component of a direct air capture system that employs carbon fiber strands. Direct air capture systems require chemical materials that can grab carbon dioxide.

To avoid catastrophic climate impacts, excessive carbon emissions must be addressed. At this point, cutting emissions isn’t enough. Direct air capture, a technology that pulls carbon dioxide out of ambient air, has great potential to help solve the problem.

But there’s a big challenge. For direct air capture technology, every type of environment and location requires a uniquely specific design. A direct air capture configuration in Texas, for example, would necessarily be different from one in Iceland. These systems must be designed with exact parameters for humidity, temperature, and air flows for each place.

Now, Georgia Tech and Meta have collaborated to produce a massive database, potentially making it easier and faster to design and implement direct air capture technologies. The open-source database enabled the team to train an AI model that is orders of magnitude faster than existing chemistry simulations. The project, named OpenDAC, could accelerate climate solutions the planet desperately needs.

The team’s research was published in ACS Central Science, a journal of the American Chemical Society.

“For direct air capture, there are many ideas about how best to take advantage of the air flows and temperature swings of a given environment,” said Andrew J. Medford, associate professor in the School of Chemical and Biomolecular Engineering (ChBE) and a lead author of the paper. “But a major problem is finding a material that can capture carbon efficiently under each environment’s specific conditions.”

Their idea was to “create a database and a set of tools to help engineers broadly, who need to find the right material that can work,” Medford said. “We wanted to use computing to take them from not knowing where to start to giving them a robust list of materials to synthesize and try.”

Containing reaction data for 8,400 different materials and powered by nearly 40 million quantum mechanics calculations, the team believes it’s the largest and most robust dataset of its kind.

Building a Partnership (and a Database)

Researchers with Meta’s Fundamental AI Research (FAIR) team were looking for ways to harness their machine learning prowess to address climate change. They landed on direct air capture as a promising technology and needed to find a partner with expertise in materials chemistry as it relates to carbon capture. They went straight to Georgia Tech.

David Sholl, ChBE professor, Cecile L. and David I.J. Wang Faculty Fellow, and director of Oak Ridge National Laboratory’s Transformational Decarbonization Initiative, is one of the world’s top experts in metal-organic frameworks (MOFs). These are a class of materials promising for direct air capture because of their cagelike structure and proven ability to attract and trap carbon dioxide. Sholl brought Medford, who specializes in applying machine learning models to atomistic and quantum mechanical simulations as they relate to chemistry, into the project.

Sholl, Medford, and their students provided all the inputs for the database. Because the database predicts the MOF interactions and the energy output of those interactions, considerable information was required.

They needed to know the structure of nearly every known MOF — both the MOF structure by itself and the structure of the MOF interacting with carbon dioxide and water molecules.

“To predict what a material might do, you need to know where every single atom is and what its chemical element is,” Medford said. “Figuring out the inputs for the database was half of the problem, and that’s where our Georgia Tech team brought the core expertise.”

The team took advantage of large collections of MOF structures that Sholl and his collaborators had previously developed. They also created a large collection of structures that included imperfections found in practical materials.

The Power of Machine Learning

Anuroop Sriram, research engineering lead at FAIR and first author on the paper, generated the database by running quantum chemistry computations on the inputs provided by the Georgia Tech team. These calculations used about 400 million CPU hours, which is hundreds of times more computing than the average academic computing lab can do in a year.

FAIR also trained machine learning models on the database. Once trained on the 40 million calculations, the machine learning models were able to accurately predict how the thousands of MOFs would interact with carbon dioxide.

The team demonstrated that their AI models are powerful new tools for material discovery, offering comparable accuracy to traditional quantum chemistry calculations while being much faster. These features will allow other researchers to extend the work to explore many other MOFs in the future.

“Our goal was to look at the set of all known MOFs and find those that most strongly attract carbon dioxide while not attracting other air components like water vapor, and using these highly accurate quantum computations to do so,” Sriram said. “To our knowledge, this is something no other carbon capture database has been able to do.”

Putting their own database to use, the Georgia Tech and Meta teams identified about 241 MOFs of exceptionally high potential for direct air capture.

Moving Forward With Impact

“According to the UN and most industrialized countries, we need to get to net-zero carbon dioxide emissions by 2050,” said Matt Uyttendaele, director of Meta’s FAIR chemistry team and a co-author on the paper. “Most of that must happen by outright stopping carbon emissions, but we must also address historical carbon emissions and sectors of the economy that are very hard to decarbonize — such as aviation and heavy industry. That’s why CO2 removal technologies like direct air capture must come online in the next 25 years.” 

While direct air capture is still a nascent field, the researchers say it’s crucial that groundbreaking tools — like the OpenDAC database made available in the team’s paper — are in development now. 

“There is not going to be one solution that will get us to net-zero emissions,” Sriram said. “Direct air capture has great potential but needs to be scaled up significantly before we can make a real impact. I think the only way we can get there is by finding better materials.”

The researchers from both teams hope the scientific community will join the search for suitable materials. The entire OpenDAC dataset project is open source, from the data to the models to the algorithms.

“I hope this accelerates the development of negative-emission technologies like direct air capture that may not have been possible otherwise,” Medford said. “As a species, we must solve this problem at some point. I hope this work can contribute to getting us there, and I think it has a real shot at doing that.”

 

Note: Georgia Tech ChBE graduate students Sihoon Choi, Logan Brabson, and Xiaohan Yu made major contributions and are co-authors of the paper.

Citation: A. Sriram et al, The Open DAC 2023 Dataset and Challenges for Sorbent Discovery in Direct Air Capture, ACS Central Science (2024).

DOI: https://doi.org/10.1021/acscentsci.3c01629

a lattice-like molecular model

A visualization of a metal-organic framework. (Credit: Logan Brabson)

a lattice-like molecular model

A visualization of the same metal-organic framework, which has been rotated to show porosity and dimension. (Credit: Logan Brabson)

A white man in his mid to late 30s with brown hair

Andrew J. Medford, associate professor in the School of Chemical and Biomolecular Engineering (ChBE).

A white middle-aged man with brown/gray hair and glasses in front of a colorful, abstract background

David Sholl, ChBE professor, Cecile L. and David I.J. Wang Faculty Fellow, and director of Oak Ridge National Laboratory’s Transformational Decarbonization Initiative

News Contact

Catherine Barzler, Senior Research Writer/Editor

catherine.barzler@gatech.edu

Collaboration in Action: Georgia Tech Provides Initial Round of Seed Grants to HBCU Partners

A group of people sitting around round tables watching a presentation.

The Research Collaboration Forum attracted industry partners and HBCU/MSI partners to Georgia Tech on November 7, 2023. (Credit: Taiesha Smith)

Georgia Tech is spearheading a bold initiative in inclusive innovation, by significantly investing in historically black colleges and universities (HBCUs) and minority-serving institutions (MSIs). Following the success of the Research Collaboration Forum in November 2023, which focused on advancing minority students in science and technology, the Executive Vice President of Research’s (EVPR) Office allocated hundreds of thousands of dollars in seed grants. 

Senior Director for Strategic Partnerships, George White, called the forum and subsequent funding “an unprecedented opportunity to bring together one of the most diverse stakeholder groups ever assembled at Georgia Tech.” This groundbreaking effort underscores Georgia Tech's commitment to diversity and collaborative progress in research and academia.

In addition to these grants, Sandia National Lab pledged $10,000 to support HBCU travel to the lab located in Albuquerque, New Mexico.

Georgia Tech thanks its industry partners — Boeing, Cadence, GTRI, GlobalFoundries, Micron, Microsoft, Novelis, and UPS, along with Georgia Tech’s EVPR Office and the Strategic Energy Institute — for supporting this initiative.

"Inclusivity is a cornerstone of our research enterprise,” said Georgia Tech Executive Vice President of Research Chaouki Abdallah. “Diverse partnerships such as these seed grants enrich our academic pursuits and allow us to not only address larger societal concerns but to also ensure that our resulting joint innovations are truly accepted by all.”

Georgia Tech plans to grow the Research Collaboration Forum into an annual event that includes additional industry partners, HBCUs, and Research 1 institutions.

“As Georgia Tech strives to be a thought leader in the space of inclusive research, initiatives like this are necessary for the success of HBCUs,” said Taiesha Smith, senior program manager for HBCU-MSI Research Partnerships. “Without the support of Georgia Tech's leadership in engaging with these diverse communities, opportunities like this simply would not exist.”

The following HBCU teams, which include a Georgia Tech faculty member, have been awarded a grant:

  • Trustworthy AI for UAV Controller Security – Clark Atlanta University
  • Analyzing Food Insecurity in Atlanta – Morehouse College
  • Team Building: 2D-2D Hybrid Heterostructure for High-Sensitivity Infrared Photodetectors – Jackson State University
  • Active Flow Control Using Suction Blowing – Tuskegee University
  • Bidirectional Learning of a Challenging Balance Task – Florida A&M University
  • The Effects of Marijuana Legalization on Teen Dating Violence – Spelman College
  • LIDAR Applications to Grow the Talent Pipeline – Savannah State University
  • Capacity Building: Characterizing Quantum Materials Under Extreme Conditions – Florida A&M University
  • Collaborative Infrastructure and Sustainability Efforts for CollabNext: A Person-Focused Knowledge Network – Texas Southern University & Fisk University
  • Strengthening Sustainability in Public Health Education: A Collaborative Initiative Between Morehouse School of Medicine and Georgia Tech, with Support from Georgia Gwinnett College, Georgia State, and RCE Greater Atlanta – Morehouse School of Medicine
  • Development of Lead-Free, Manganese-Based Halide Perovskites for Optoelectronic Applications – Albany State University
  • Nanostructured Catalysts for Selective Electrocatalysis of Biomass-Derived Platform Molecule – Clark Atlanta University
  • Inclusive Materials and Manufacturing Engineering Research Scholarship Experience – Albany State University and Morris Brown College

Microsoft also provided support to several participating HBCUs through its Microsoft Accelerate Foundation Models Research Program – Minority Serving Institutions Cohort:

  • Morehouse School of Medicine
  • Morehouse College
  • Alabama A&M University
News Contact

Michelle Azriel, Senior Writer/Editor 

mazriel3@gatech.edu 

 

 

Pascal Van Hentenryck to Lead Georgia Tech’s AI Hub

Georgia Tech’s AI Hub will be directed by Pascal Van Hentenryck, announced Chaouki Abdallah, executive vice president for Research. Van Hentenryck, A. Russell Chandler III Chair and professor in the H. Milton Stewart School of Industrial and Systems Engineering, also directs the NSF Artificial Intelligence Institute for Advances in Optimization (AI4OPT). 

Georgia Tech has been actively engaged in artificial intelligence (AI) research and education for decades. Formed in 2023, the AI Hub is a thriving network, bringing together over 1000 faculty and students who work on fundamental and applied AI-related research across the entire Institute.  

“Pascal Van Hentenryck will drive innovation and excellence at the helm of Georgia Tech’s AI Hub,” said Abdallah. “His leadership of one of our three AI institutes has already shown his dedication to fostering impactful partnerships and cultivating a dynamic ecosystem for AI progress at Georgia Tech and beyond.” 

The AI Hub aims to advance AI through discovery, interdisciplinary research, responsible deployment, and education to build the next generation of the AI workforce, as well as a sustainable future. Thanks to Tech’s applied, solutions-focused approach, the AI Hub is well-positioned to provide decision makers and stakeholders with access to world-class resources for commercializing and deploying AI. 

“A fundamental question people are asking about AI now is, ‘Can we trust it?’” said Van Hentenryck. “As such, the AI Hub’s focus will be on developing trustworthy AI for social impact — in science, engineering, and education.” 

U.S. News & World Report has ranked Georgia Tech among the five best universities with artificial intelligence programs. Van Hentenryck intends for the AI Hub to leverage the Institute’s strategic advantage in AI engineering to create powerful collaborations. These could include partnerships with the Georgia Tech Research Institute, for maximizing societal impact, and Tech’s 10 interdisciplinary research centers as well as its three NSF-funded AI institutes, for augmenting academic and policy impact.  

“The AI Hub will empower all AI-related activities, from foundational research to applied AI projects, joint AI labs, AI incubators, and AI workforce development; it will also help shape AI policies and improve understanding of the social implications of AI technologies,” Van Hentenryck explained. “A key aspect will be to scale many of AI4OPT’s initiatives to Georgia Tech’s AI ecosystem more generally — in particular, its industrial partner and workforce development programs, in order to magnify societal impact and democratize access to AI and the AI workforce.” 

Van Hentenryck is also thinking about AI’s technological implications. “AI is a unifying technology — it brings together computing, engineering, and the social sciences. Keeping humans at the center of AI applications and ensuring that AI systems are trustworthy and ethical by design is critical,” he added. 

In its first year, the AI Hub will focus on building an agile and nimble organization to accomplish the following goals: 

  • facilitate, promote, and nurture use-inspired research and innovative industrial partnerships;  

  • translate AI research into impact through AI engineering and entrepreneurship programs; and 

  • develop sustainable AI workforce development programs.  

Additionally, the AI Hub will support new events, including AI-Tech Fest, a fall kickoff for the center. This event will bring together Georgia Tech faculty, as well as external and potential partners, to discuss recent AI developments and the opportunities and challenges this rapidly proliferating technology presents, and to build a nexus of collaboration and innovation.  

 

News Contact

Shelley Wunder-Smith
Director of Research Communications