Green Cleaning Workshop

Join the Georgia Tech Office of Sustainability in the Community Garden to learn how to make natural and biodegradable cleaning products.  Participants will create their own products to take home.

Register Here

Georgia Tech Leads Department of Energy’s Earthshots Funding with Seven Projects

Matthew McDowell, Akanksha Menon, and Claudio Di Leo

Matthew McDowell, Akanksha Menon, and Claudio Di Leo

Georgia Tech faculty and researchers are involved in five university-led projects and two new Energy Earthshot Research Centers that are part of a $264 million grant from the U.S. Department of Energy (DOE). The funding includes establishing 11 new Energy Earthshot Research Centers (EERC) led by DOE’s national labs and 18 university research teams addressing one or more of DOE’s Energy Earthshots initiatives focused on industrial decarbonization, carbon storage and removal, offshore wind, and more.

University Projects

University research teams will conduct crosscutting, fundamental research to address knowledge gaps that limit achievement of the Energy Earthshots goals. These teams are focused on scientific challenges spanning the Office of Science research portfolio and complement work done by the EERCs.

Akanksha Menon, assistant professor in the George W. Woodruff School of Mechanical Engineering, has been awarded $3 million in funding to lead a university project titled “Understanding Thermo-Chemo-Mechanical Transformations in Thermal Energy Storage Materials and Composites.” The project will bring together Matthew McDowell, associate professor in the Woodruff School; Claudio Di Leo, assistant professor in the Daniel Guggenheim School of Aerospace Engineering; and Jeff Urban from the Lawrence Berkeley National Laboratory to provide a fundamental understanding of the coupled thermo-chemo-mechanical phenomena in thermal energy storage materials that will enable low-cost and stable storage.

Annalisa Bracco, professor and associate chair; Taka Ito, professor; and Chris Reinhard, Georgia Power Chair and associate professor — all from the School of Earth and Atmospheric Sciences — will join colleagues from Princeton, Texas A&M, and Yale University for an $8 million Earthshot project that will build an “end-to-end framework” for studying the impact of carbon dioxide (CO2) removal efforts. The project, titled “Carbon dioxide removal and high-performance computing: Planetary Boundaries of Earth Shots,” includes creating computer models to measure how well CO2 removal techniques work on land, rivers, and oceans.

Elizabeth Qian, assistant professor in the Guggenheim School and the School of Computational Science and Engineering, will join colleagues from New York University, Los Alamos National Lab, and National Renewable Energy Lab for an Earthshot project titled “Learning reduced models under extreme data conditions for design and rapid decision-making in complex systems (ROME).” The project will develop mathematical foundations and computational methods to support the design and operation of complex systems for carbon removal and renewable energy generation that will be used for simulation, design, and decision-making of the Floating Offshore Wind Shot and the Carbon Negative Shot EERCs.

David Flaherty, professor in the School of Chemical and Biomolecular Engineering will join colleagues from the University of Illinois Urbana-Champaign, Northern Arizona University, Texas State University, and Argonne National Lab to co-lead a project titled “Harnessing Electrostatics for the Conversion of Organics, Water and Air: Driving Redox on Particulate Liquids Earthshot (DROPLETS).” The overall objective of DROPLETS is to explore an approach based on microdroplet-enabled redox reactions (which involve the transfer of electrons between substances) toward H2 production (a clean and renewable energy source), CO2 activation (which can help mitigate greenhouse gas emissions), and the synthesis of redox species for long-duration energy storage.

Guoxiang (Emma) Hu, assistant professor in the School of Materials Science and Engineering, joins colleagues from Georgia State University, Carnegie Melon University, Oak Ridge National Lab, and the University of Utah on a project titled “Atomic Level Compositional Complexity for Electrocatalysis (Atomic-C2E).” Atomic-C2E will integrate fundamental electrochemistry, quantum chemical and multiscale simulations, and materials chemistry to develop an understanding of electrocatalysts that aid in the conversion of CO2 into value-added chemical fuels and hydrogen production via water electrolysis — and address technological bottlenecks challenging them.
 

National Lab Centers

The DOE national lab EERCs will bring together multi-institutional, multidisciplinary teams to perform energy-relevant research with a scope and complexity beyond what is possible in standard single-investigator or small-group awards. Addressing key research challenges relevant to the Energy Earthshots, the 11 new centers will be housed at eight DOE national laboratories and will receive a combined $195 million over four years.

Of the 11 lab centers, the DEGradation Reactions in Electrothermal Energy Storage (DEGREES) center led by the National Renewable Energy Laboratory consists of Professor Akanksha Menon and Associate Professor Shannon Yee from the Woodruff School. DEGREES is an EERC that will provide fundamental understanding of the science behind complex degradation mechanisms and instabilities that affect the performance of thermal energy storage.

Non-Equilibrium Energy Transfer for Efficient Reactions (NEETER) is the second EERC that will be housed at the Department of Energy's Oak Ridge National Laboratory (ORNL) and involves Georgia Tech. Led by David Sholl, director of ORNL’s transformational decarbonization initiative and professor in the School of Chemical and Biomolecular Engineering, NEETER is focused on developing chemical processes that use sustainable methods instead of burning fossil fuels to radically reduce industrial greenhouse gas emissions to stem climate change and limit the crisis of a rapidly warming planet.

About DOE’s Energy Earthshots Initiative

The Department of Energy launched the Energy Earthshots Initiative to spur decarbonization efforts that will help the United States meet climate and clean energy goals. The initiative connects DOE’s basic science and energy technology offices to accelerate innovations toward more abundant, affordable, and reliable clean energy solutions; seeks to revolutionize many sectors across the United States; and will rely on fundamental science and innovative technology to be successful.

Professor Elizabeth Qian will Serve as Co-PI on DoE Energy Earthshots Project                  

Floating Offshore Wind Shot™ decorative icon

Qian will develop computing methods to support design and operation of complex systems for carbon removal and renewable energy generation.

Full story

Three Earth and Atmospheric Sciences Researchers Awarded DOE Earthshot Funding for Carbon Removal Strategies

Carbon Negative Shot™ decorative icon

Bracco, Ito, and Reinhard will create computer models to measure how well CO2 removal techniques work on land, rivers, and oceans, as part of $264 million in grants.

Full story

Assistant Professor Akanksha Menon Awarded $3 Million for Research as part of DOE's Energy Earthshots Initiative

Long Duration Storage Shot™ decorative icon

Menon and her team will address two Energy Earthshots to help achieve net-zero carbon by 2050, combat climate crisis.

Full story

Professor David Sholl Leading New Energy Earthshot Research Center to Stem Climate Change

Carbon Negative Shot™ decorative icon

The Department of Energy also selected David Flaherty to co-lead a second project designed to lower energy input and reactor cost for complex chemical reactions.

Full story

Writer and Media Contact:
Priya Devarajan | priya.devarajan@research.gatech.edu        

News Contact

Priya Devarajan, Communications Manager, SEI & RBI

BBISS Executive Director Town Hall

The Brook Byers Institute for Sustainable Systems (BBISS) invites you to join us for a town hall meeting on September 10, 2024 at Noon. This town hall will be hybrid event hosted via Teams. We want to keep the BBISS community informed about the search process and to answer questions, as well as to receive feedback about the search and what people wish to see in a future executive director. All BBISS personnel and affiliated faculty are welcome. Julia Kubanek, Georgia Tech Vice President for Interdisciplinary Research, will join us to kick off this important discussion.

Renewable Energy Policies Provide Benefits Across State Lines

A woman with blonde hair and a blue sweater stands among solar panels.

Marilyn Brown, Regents’ and Brook Byers Professor of Sustainable Systems in Georgia Tech’s School of Public Policy

While the U.S. federal government has clean energy targets, they are not binding. Most economically developed countries have mandatory policies designed to bolster renewable electricity production. Because the U.S. lacks an enforceable federal mandate for renewable electricity, individual states are left to develop their own regulations. 

Marilyn Brown, Regents’ and Brook Byers Professor of Sustainable Systems in Georgia Tech’s School of Public Policy; Shan Zhou, an assistant professor at Purdue University and Georgia Tech Ph.D. alumna; and Barry Solomon, a professor emeritus of environmental policy at Michigan Technological University, investigated how clean electricity policies affect not only the states that adopt them, but neighboring states as well. Using data-driven comparisons, the researchers found that the impact of these subnational clean energy policies is far greater — and more nuanced — than previously known. 

Their research was recently published in the journal Proceedings of the National Academy of Sciences

“Analysts are asking if the U.S. should have a federal renewable mandate to put the whole country on the same page, or if individual state policies are sufficient,” Brown said. “To answer that question, it is useful to know if states with renewable energy policies are influencing those without them.”

Brown, Solomon, and Zhou examined a common clean energy policy tool: the Renewable Portfolio Standard (RPS). Adopted by more than half of U.S. states, RPSs are regulations requiring a state’s utility providers to generate a certain percentage of their electricity from renewable resources, such as wind or solar. Many of these standards are mandatory, with utility companies facing fines if they fail to reach targets within a given time.

To investigate the influence of these policies across state lines, the researchers first created a dataset that included 31 years (1991-2021) of annual renewable electricity generation data for 48 U.S. states and the District of Columbia. They then used the dataset to generate pairs of states linking each state to its geographic neighbors or electricity trading partners, allowing them to examine the influence of the RPS policy adopted by one of the pair on the renewable energy generation of the other — a total of 1,519 paired comparisons. 

“By only looking at the pairs, we can see if an RPS in one state directly affects renewable electricity generation in another state, and, if that’s the case, whether it is because they are geographic neighbors or if it’s because they are participating in the same wholesale electricity market,” Zhou said. 

Looking into the electricity market is important, because states often purchase electricity from other states through wholesale markets rather than exclusively producing their own power, and the purchased power can be generated from renewables. Utilities in some states may be allowed to meet their own RPS requirements by purchasing renewable energy credits based on the renewable electricity generated in other states. 

In their analyses, the team also considered the concept of “policy stringency.” A stringency measure evaluates a state’s renewable electricity targets relative to the amount currently produced in the state. For example, if a state requires electric utilities to generate 30% of their electricity from renewable sources by 2030 and the state already has 25%, it isn’t a very stringent policy. On the other hand, if a state has a 30% target and only uses 10% renewables currently, it has a more ambitious and stringent RPS.

Though policy experts have used the metric in related work for over a decade, the research team improved the design. 

“Our stringency variable includes interim targets as well as the existing share of renewable energy generation,” Solomon said.

The team found that the amount of renewable electricity generation in a state is not only influenced by whether that state has its own RPS, but also by the RPS policies of neighboring states. 

“We also learned that the stronger a neighboring state’s RPS policy is, the more likely a given state is to generate more renewable electricity,” Brown said. “It’s all a very interactive web with many co-benefits.”

The authors were surprised to find that a given state’s electricity trading partners did not hold the most influence over renewable generation, but rather the geographical proximity to RPS states. They suggest that past RPS policy research focusing on within-state impacts likely underestimated an RPS’s full impact. While the researchers have not yet identified all factors that can cause spillover effects, they plan to investigate this further. 

“The spillover effect is very significant and should not be overlooked by future research, especially for states without RPSs,” Zhou said. “For states without policies, their renewable electricity generation is very heavily influenced by their neighbors.”

Citation: Shan Zhou, Barry D. Solomon, and Marilyn A. Brown, “The spillover effect of mandatory renewable portfolio standards.” PNAS (June 2024). 
DOI: https://doi.org/10.1073/pnas.2313193121
 

 

A headshot of a woman with black hair, glasses, and a gray plaid blazer

Shan Zhou, assistant professor at Purdue University and Georgia Tech Ph.D. alumna

A man with glasses, a goatee, and a pink collared shirt

Barry Solomon, professor emeritus of environmental policy at Michigan Technological University

News Contact

Catherine Barzler, Senior Research Writer/Editor

catherine.barzler@gatech.edu

Sustainability Next Grantee Lightning Presentations and Networking - 2nd Session

Please join us for two upcoming lightning talk and networking sessions with Sustainability Next grant award winners, hosted by BBISS. Meet your colleagues and learn about their research projects enabled by the Sustainability Next grants. Presenters include academic and research faculty at Georgia Tech. Topics include future large-scale collaborative sustainability research, research translation, and/or high-impact outreach. The grants also were to provide mid-career faculty with leadership and community building opportunities.

Sustainability Next Grantee Lightning Presentations and Networking - 1st Session

Please join us for two upcoming lightning talk and networking sessions with Sustainability Next grant award winners, hosted by BBISS. Meet your colleagues and learn about their research projects enabled by the Sustainability Next grants. Presenters include academic and research faculty at Georgia Tech. Topics include future large-scale collaborative sustainability research, research translation, and/or high-impact outreach. The grants also were to provide mid-career faculty with leadership and community building opportunities.

Community Spotlight - Yuanzhi Tang

Portrait of Yuanzhi Tang

- Written by Benjamin Wright -

Yuanzhi Tang knows firsthand how much of an impact BBISS can make through its programs. The associate professor in the School of Earth and Atmospheric Sciences answered a BBISS call for faculty fellowships, and later seed funding for a project related to sustainable resources. That project grew into a collaboration with Georgia Tech’s Strategic Energy Institute; the Center for Critical Mineral Solutions (CCMS), supported by the College of Sciences and co-sponsored by BBISS; SEI; the Institute for Electronics and Nanotechnology (IEN); and the Institute for Materials (IMat and IEN are now combined into the Institute for Matter and Systems). The goal of the center is to develop sustainable solutions for the grand challenges associated with critical metals and materials essential for the clean energy transition.

During her time as a faculty fellow within BBISS, Yuanzhi became familiar with the people in the organization and had the opportunity to evaluate student and faculty fellow applications. When the opportunity arose to take on the role of associate co-director of interdisciplinary research for BBISS, she was happy to accept so she could help others access resources that had shaped her growth as a researcher at Georgia Tech.

“Being part of a community of people who value interdisciplinary research on sustainability-related topics, I benefited from the interactions and engagement with BBISS and I hope to carry that forward, particularly for young faculty. They are often eager to connect but might not know where to begin. BBISS can be a starting point for them.”

With a background in geochemistry and degrees from Peking University, Stony Brook University, and a postdoc at Harvard, Yuanzhi has gained a breadth of experience that has earned her a variety of awards and recognition. As she joins BBISS in a formal role, she has some advice for early-career colleagues.

“Go to seminars, events, and organized activities, as the best ideas often come through communicating and networking with others, and that’s how you discover that your expertise is needed in other fields. Be confident in who you are as a scholar, but also go out and find ways to collaborate. Georgia Tech places value on interdisciplinary research, and this is a unique strength that you should leverage.”

Away from the office, classroom, and lab, Yuanzhi is a wife and mother of two young children. She enjoys cuddle time with the kids and navigating parenthood in an academically driven household. Her husband is also a Georgia Tech professor and together they juggle the challenges of their careers with spending quality time with the children. “We try to keep work minimal on weekends and get out of the house and enjoy what Atlanta has to offer. We love nature and appreciate that we can be close to campus, close to the city, and still have so many green places to be outside.”

As she embarks on her new role with BBISS, Yuanzhi sees parallels between being a parent, professor, and now an administrator.

“The world is changing rapidly with the explosion of information and technology. It’s a struggle to know what to teach my kids and my students. How do we prepare them for five, 10, or even 20 years from now? This feeling of responsibility connects my work and personal life. It’s challenging, but also very exciting to see how we can help them embrace changes.”

News Contact

Brent Verrill, Research Communications Program Manager, BBISS

Climate Action Plan Implementation Committee Informational Webinar

The Office of Sustainability will organize implementation committees to advance Georgia Tech's Climate Action Plan starting in Fall 2024. Join this webinar to learn how to get involved. 

Register here.