2025 Southeastern Energy Conference - Day 1

2025 Conference Vision: Energy is at the root of almost everything we do, and it only makes sense that such a vital resource plays a central role in international politics. Whether it is the weaponization of the power grid during Russia’s war in Ukraine or the challenge of cooperating on climate goals, energy is at the core of the geopolitical landscape. The 2025 Georgia Tech Energy Conference will explore the intersection between energy and geopolitics, discussing the ways in which energy shapes how countries interact.

AI’s Energy Demands Spark Nuclear Revival

Image of Three Mile Island

The demand for electricity to power AI data centers is skyrocketing, placing immense pressure on traditional energy sources.  

“If we continue pursuing clean energy for AI and data centers, we will need to triple the energy supply for data centers by 2030,” says Woodruff Professor Anna Erickson, a nuclear engineering expert from Georgia Tech. Nuclear power, with its high energy density and continuous operation, is well-suited to provide the steady base load of electricity required. 

According to Erickson, the recent headlines of the restarting of Pennsylvania’s Three Mile Island Unit 1 reactor (TMI-1) could play a crucial role in meeting these demands sustainably. 

This decision, supported by a 20-year agreement with Microsoft, aims to provide carbon-free energy to meet the escalating power demands of AI data centers. The company’s goal to be carbon negative by 2030 aligns with the broader push for sustainable energy solutions.  

According to the United States Energy Information Administration, as of Aug. 1, 2023, the United States has 93 operating commercial nuclear reactors across 54 nuclear power plants in 28 states. The most recent reactor to begin commercial operation is Unit 4 at the Alvin W. Vogtle Electric Generating Plant in Georgia, which started on April 29, 2024. 

The commercial start of Unit 4 completes the 11-year expansion project at Plant Vogtle.

A Historic Site With a New Mission 

Three Mile Island, infamous for the 1979 partial meltdown of its Unit 2 reactor, has remained a symbol of nuclear caution. However, the reopening of TMI-1, which operated safely for decades before its 2019 shutdown due to financial constraints, represents a potential renaissance for nuclear power. The plant’s revival is seen as a strategic move to address the increasing strain on conventional electricity grids, exacerbated by the energy-intensive needs of AI technologies. 

Expert Insights on Safety and Innovation 

Erickson stresses the importance of rigorous safety measures and technological upgrades in the reopening process.  

“Reopening TMI-1 will require addressing several critical safety concerns, primarily focused on aging infrastructure and modern regulatory standards,” she explains. Comprehensive inspections and upgrades to emergency cooling, radiation monitoring, and digital control systems will be essential to ensure structural integrity and operational reliability. 

Erickson notes, “We can expect to see developments in advanced radiation detection, novel sensors, and AI-driven security systems.” These technologies not only enhance safety but also improve the efficiency and reliability of nuclear power plants. She also highlights the potential for innovative advancements in reactor technology.  

Economic and Environmental Implications 

The reopening of TMI-1 is expected to bring notable economic advantages. According to Erickson, upgrading existing infrastructure is likely to be more cost-effective than new construction and can be completed more quickly.  

“The implications of restarting are significant,” she explains. “It supports clean energy goals and provides a reliable power source for the growing needs of data centers.” 

Environmental considerations are also paramount. The plant’s carbon-free energy production aligns with efforts to combat climate change and reduce greenhouse gas emissions.  

“Nuclear energy is a clean and reliable power source that can help us achieve our climate goals while meeting the growing energy demands of AI,” Erickson emphasizes. 

Public Perception and Regulatory Oversight 

Despite the potential benefits, public perception of nuclear energy remains cautious, primarily due to historical incidents like the Three Mile Island accident. Erickson acknowledges these concerns and indicates the importance of transparent regulatory oversight and effective communication.  

She says the U.S. Nuclear Regulatory Commission (NRC) “does a lot to ensure safety and security, but as experts, we need to do a better job of explaining technological advances and the benefits of nuclear energy.”  

The reopening of TMI-1 is subject to approval from the NRC and other regulatory bodies, ensuring that all safety and environmental standards are met. 

News Contact

Siobhan Rodriguez 

Institute Communications 

Marta Hatzell Appointed Interim Deputy Director of the Strategic Energy Institute

Portrait of Marta Hatzell

Portrait of Marta Hatzell

Associate Professor Marta Hatzell has been appointed interim deputy director of the Georgia Tech Strategic Energy Institute (SEI).

Hatzell currently leads the industrial decarbonization and clean catalysis initiative at SEI and holds joint appointments in the George W. Woodruff School of Mechanical Engineering and the School of Chemical and Biomolecular Engineering. Most recently, she led the Materials for Carbon-Neutral Fuel Production track at this year’s Energy Materials Day, which attracted over 400 participants from academia and industry. 

“Marta has been an outstanding addition to SEI’s initiative lead program, where her contributions have already made a significant impact. I am excited to see her further engage with the Georgia Tech energy community in this role,” said Christine Conwell, SEI interim executive director.

Hatzell’s research group focuses on exploring sustainable catalysis and separations to enable clean energy, water, and food production. She serves as the site principal investigator and research thrust leader for CASFER, the National Science Foundation Engineering Research Center (NSF-ERC) with funding of $26 million for advancing sustainable fertilizer production. She is also a principal investigator in the Department of Energy’s $100 million National Alliance for Water Innovation project. 

Hatzell is the recipient of the NSF Early CAREER Award for her work on distributed solar fertilizers and received the Gordon and Betty Moore Inventor fellowship to work on a low-cost, photocatalytic air-breathing system that converts air into liquid, ammonia-based fertilizer. She also received the 2020 Sloan Research Fellowship in Chemistry and the American Chemical Society’s (ACS) Sustainable Chemistry Lectureship Award in 2024. Hatzell serves as a senior editor of the ACS Energy Letters journal.

Before her role at Georgia Tech, she was a postdoctoral researcher in the Department of Materials Science and Engineering at the University of Illinois Urbana-Champaign. She holds a Ph.D. in mechanical engineering from Penn State University. 

“I’m looking forward to working with the SEI staff and faculty to continue to grow Georgia Tech’s impact on the rapidly changing energy sector,” says Hatzell.  

News Contact

Priya Devarajan || SEI Communications Program Manager

Georgia Tech’s Executive Vice President for Research Search: Finalist 1 Seminar

Each candidate’s bio and curriculum vitae, along with further details, will be accessible through the EVPR search site two business days ahead of each visit. Georgia Tech credentials are required to access all materials. Information is being made available in this manner to protect the confidentiality of the finalists.

Finalists Chosen in Georgia Tech’s Executive Vice President for Research Search

Historical sign depicting information about Tech Tower

Georgia Tech’s Executive Vice President for Research (EVPR) search committee has selected three finalists. Each candidate will visit campus and present a seminar sharing their broad vision for the Institute's research enterprise. 

The seminars are open to all faculty, students, and staff across the campus community. Interested individuals can attend in person or register to participate via Zoom (pre-registration is required).    

All seminars will take place at 11 a.m. on the following dates:  

  • Candidate 1: Monday, January 13, Scholars Event Theater, Price Gilbert 1280 (register for webinar)  
  • Candidate 2: RESCHEDULED to Wednesday, January 29, Scholars Event Theater, Price Gilbert 1280 (register for webinar)
  • Candidate 3: Monday, January 27, Scholars Event Theater, Price Gilbert 1280 (register for webinar)  

Each candidate’s bio and curriculum vitae, along with further details, will be accessible through the EVPR search site 48 hours prior to each visit. Georgia Tech credentials are required to access all materials. Information is being made available in this manner to protect the confidentiality of the finalists. Following each candidate’s visit, the campus community is invited to share their comments via a survey that will be posted on the candidate’s webpage.   

The search committee is chaired by Susan Lozier, dean of the College of Sciences. Search committee members include a mix of faculty and staff representing colleges and units across campus. Georgia Tech has retained the services of the executive search firm WittKieffer for the search.  

News Contact

Shelley Wunder-Smith | shelley.wunder-smith@research.gatech.edu
Director of Research Communications
 

Georgia Tech Energy Day 2025

Georgia Tech Energy Day provides an opportunity for key stakeholders to interact with Georgia Tech researchers who are pioneering work in this critical field. The focus areas of the event are Energy Storage, Solar Energy Conversion, and E-Fuels and Chemicals.   

Matthew McDowell Selected as Associate Chair for Research

Matthew McDowell, Associate Professor, Woodruff School of Mechanical Engineering and SEI Initiative Lead for Energy Storage

Matthew McDowell, Associate Professor, Woodruff School of Mechanical Engineering and Strategic Energy Institute Initiative Lead for Energy Storage

Associate Professor Matthew McDowell has been selected as the next Associate Chair for Research in the George W. Woodruff School of Mechanical Engineering. He will step into the role on January 1, 2025.

The Associate Chair for Research is responsible for working with the Woodruff School’s faculty to develop a strategic research plan for future growth and investments in the School, as well as identifying new research opportunities, helping to foster strategic relationships with government, industry, and foundations, and synergizing research efforts with other units in the College of Engineering and across the Institute.

“I am thrilled to be chosen for this role, and I look forward to working with the faculty, students, researchers, and staff of the Woodruff School to enhance and support our world-class research program,” said McDowell.

McDowell joined Georgia Tech in the fall of 2015 as an assistant professor with a joint appointment in the Woodruff School and the School of Materials Science and Engineering (MSE). He was named Carter N. Paden, Jr. Distinguished Chair earlier this year and serves as co-director of the Georgia Tech Advanced Battery Center (GTABC). Through this center, McDowell and Professor Gleb Yushin (MSE) are building community at the Institute, enhancing research and educational relationships with industry partners, and creating a new battery manufacturing facility on Georgia Tech’s campus.

“I am excited to work with Matt in advancing the research priorities and goals of the Woodruff School,” said Devesh Ranjan, Eugene C. Gwaltney Jr. School Chair and professor. “Through his exceptional leadership of the Georgia Tech Advanced Battery Center, Matt has demonstrated a deep commitment to excellence in scholarship and to fostering partnerships that drive innovative, collaborative research across the Institute. I am confident in the positive transformation he will bring to our program in this new role.”

Read More on the ME Newspage

 

News Contact

Georgia Tech Alum Johney Green Selected as New Lab Director at Savannah River National Lab

Portrait of Johney Green, SEI EAB Member

Johney Green

Johney Green Jr., M.S. ME 1993, Ph.D. ME 2000, has been chosen to serve as the new laboratory director for Savannah River National Laboratory (SRNL). A proud Yellow Jacket, Green received both his master’s and doctoral degrees in mechanical engineering from Georgia Tech and currently serves on the Strategic Energy Institute’s (SEI) External Advisory Board. He also served on the board of the George W. Woodruff School of Mechanical Engineering from 2017 to 2022.

“SRNL has truly found an exceptional leader in Johney. His vision and dedication are inspiring, and I am genuinely excited to see the remarkable contributions he will make in advancing SRNL,” said Christine Conwell, SEI interim executive director. “We look forward to his continued partnership with SEI and the positive impact he will bring to the energy community in 2025 and beyond.”

The Battelle Savannah River Alliance (SRNL’s parent organization) selected Green for this role, describing him as “a dynamic leader who brings deep, wide-ranging scientific expertise to this new position.” 

With an annual operating budget of about $400 million, SRNL is a multiprogram national lab leading research and development for the Department of Energy’s (DOE) Offices of Environmental Management and Legacy Management and the National Nuclear Security Administration’s weapons and nonproliferation programs. 

Green currently serves as associate laboratory director for mechanical and thermal engineering sciences at the National Renewable Energy Laboratory (NREL). In this position, he oversees a diverse portfolio of research programs including transportation, buildings, wind, water, geothermal, advanced manufacturing, concentrating solar power, and Arctic research. His leadership impacts a workforce of about 750 and involves managing a budget of more than $300 million.

At NREL, Green transformed the lab’s wind site into the innovative Flatirons Campus and transitioned the campus from a single-program wind research site to a multiprogram research campus that serves as the foundational experimental platform for the DOE’s Advanced Research on Integrated Energy Systems (ARIES) initiative.

"We are immensely proud to call Johney a Woodruff School alumnus. His achievements and service to Tech through advisory board engagement inspires us, and we are excited to see him step into this prestigious role at SRNL. We look forward to deepening our collaboration with him as he continues to make a powerful impact,” said Devesh Ranjan, Eugene C. Gwaltney, Jr. School Chair and professor in the Woodruff School.

Prior to his role at NREL, Green held several key leadership roles at Oak Ridge National Laboratory (ORNL). As director of the Energy and Transportation Science Division and group leader for fuels, engines, and emissions research, he managed a broad science and technology portfolio and user facilities that made significant science and engineering advances in building technologies; sustainable industrial and manufacturing processes; fuels, engines, emissions, and transportation analysis; and vehicle systems integration. While Green was the division director, ORNL developed the Additive Manufacturing Integrated Energy (AMIE) demonstration project, a model of innovative vehicle-to-grid integration technologies and next-generation manufacturing processes.

Early in his career, Green conducted combustion research to stabilize gasoline engine operation under extreme conditions. During the course of that research, he joined a team working with Ford Motor Co., seeking ways to simultaneously extend exhaust gas recirculation limits in diesel engines and reduce nitrogen oxide and particulate matter emissions. He continued this collaboration as a visiting scientist at Ford's Scientific Research Laboratory, conducting modeling and experimental research for advanced diesel engines designed for light-duty vehicles. On assignment to the DOE’s Vehicle Technologies Office, Green also served as technical coordinator for the 21st Century Truck Partnership. He also contributed to a dozen of ORNL's 150-plus top scientific discoveries.

Green was the recipient of a National GEM Consortium Master’s Fellowhip sponsored by Georgia Tech and ORNL, and he served as the National GEM Consortium chairperson from 2022-2024. He is a Fellow of the American Association for the Advancement of Science and an SAE International Fellow. He has received several awards during his career and holds two U.S. patents in combustion science. 

News Contact

Priya Devarajan || SEI Communications Program Manager

Solar Geoengineering Could Save 400,000 Lives a Year, Georgia Tech Study Says

""

Assistant Professor Anthony Harding

When it comes to finding solutions to climate change, there’s no shortage of technologies vying for attention, from renewable energy to electric vehicles to nuclear energy. One such contender, solar geoengineering, is favored by proponents who say it could quickly cool the planet and give the world time to fully implement efforts to limit emissions and remove carbon from the atmosphere.  

But that promise comes with risks, which include potentially poorer air quality or depleted atmospheric ozone – both of which can cause serious health issues of their own. 

A new Georgia Tech School of Public Policy-led study published in the Proceedings of the National Academy of Sciences (PNAS) suggests that while those risks deserve further consideration, solar geoengineering could save as many as 400,000 lives a year through a reduction in temperature-related deaths attributable to climate change.  

“An important question is how the reduction in climate risks from solar geoengineering compares to the additional risks its use entails,” said lead author Anthony Harding of the School of Public Policy. “This study offers a first step in quantifying the risks and benefits of solar geoengineering and shows that, for the risks we considered, the potential to save lives outweighs the direct risks,"  

Harding co-authored the PNAS article with Gabriel Vecchi and Wenchang Yang of Princeton University and David Keith from the University of Chicago. 

The researchers studied a climate change mitigation strategy called stratospheric aerosol injection (SAI), a type of solar geoengineering that involves spraying tiny reflective particles into the upper atmosphere. Those particles would then redirect some sunlight back to space and help cool Earth. 

The authors used computer models and historical data on how temperature affects death rates to see how much solar geoengineering might affect death rates, assuming a 2.5-degree Celsius increase in average temperature from pre-industrial levels and similar approaches to climate change as seen in the world currently. 

They found that cooling global temperatures by 1 degree Celsius with solar geoengineering would save 400,000 lives each year, outweighing deaths caused by solar geoengineering’s direct health risks from air pollution and ozone depletion by a factor of 13. This means that the number of lives saved due to solar geoengineering-caused cooling would be 13 times the number of lives potentially lost from solar geoengineering’s known risks. 

Many of those deaths would be avoided in hotter, poorer regions, the study notes. Cooler, wealthier regions could actually face increased cold-related deaths. 

Solar geoengineering has generated millions of dollars in funding and a recommendation by the National Academies of Science that the federal government should provide millions more toward research and the development of a risk-risk analysis similar to what Harding’s team produced. But the tech has also drawn concern, including from the Union of Concerned Scientists. That group says there’s too much environmental, ethical, and geopolitical risk to proceed without much more research. 

The authors caution that their study is an important starting point in better understanding solar geoengineering's promise and peril but is far from a comprehensive evaluation of the technology’s risks and benefits. 

They say their models are based on idealized assumptions about aerosol distribution, population and income growth, and other factors. They also can’t capture all of the real-world complexities that solar geoengineering would entail. They note their study also does not address all of the potential risks of solar geoengineering, such as possible impacts on ecosystems, global politics, or the possibility governments will rely on the technology to delay politically difficult emissions cuts. 

Still, the researchers say, the study suggests that for many regions, solar geoengineering could well be more effective at saving lives than emissions reductions alone and is worth keeping in the mix as the world searches for the optimal ways to cool our warming planet. 

“There’s no perfect resolution to the climate crisis,” said Harding. “Solar geoengineering entails risks, but it could also alleviate real suffering, so we need to better understand how the risks compare to the benefits to inform any potential future decisions around the technology.” 

The paper, “Impact of Solar Geoengineering on Temperature-Attributable Mortality,” was published in the Proceedings of the National Academy of Sciences on Dec. 17. It is available at https://doi.org/10.1073/pnas.2401801121. 

 

News Contact

Michael Pearson
Ivan Allen College of Liberal Arts

Manufacturing 4.0 Consortium Open Meeting

We are pleased to invite you to our upcoming GT Manufacturing 4.0 Consortium Open Meeting and and Poster/Senior Design Fair on January 30, 2025 at the Georgia Tech Global Learning Center.