IRIM Spring 2026 Seminar Series | Featuring - Amy Orsborn, University of Washington

Title: TBA

 

Abstract: TBA

 

Stepping Into the Future: A Paralyzed Veteran Returns to Georgia Tech for His Ph.D.

Ignacio Montoya stands in LA

Ignacio Montoya was on a flight from Los Angeles to Atlanta in 2024 with a serendipitous seatmate. The biomedical engineer was seated next to Georgia Tech President Àngel Cabrera, and the two had a conversation about Montoya’s personal story and career aspirations. 

Cabrera introduced Montoya to a professor who could take his work to the next level — Cassie Mitchell, an associate professor in the Wallace H. Coulter Department of Biomedical Engineering (BME). Montoya’s research uses AI to study how robotic exoskeletons and spinal cord stimulation can reawaken dormant neural circuits and help people with paralysis regain sensation, mobility, autonomy, and vital physiological functions once thought permanently lost. Drawing on his experience in leading-edge clinical research, he aims to turn scientific discoveries into real-world solutions that improve independence, quality of life, and health for those with spinal cord injuries. 

It’s not only a curiosity for him, though. In 2012, Montoya was about to graduate from Georgia Tech and become a fighter pilot in the Air Force. Then, one night, he got into a motorcycle accident that left him paralyzed from the chest down. 

Ever since, he has worked to better understand his injury and his options. After earning a master’s in biomedical engineering from Georgia Tech in 2018, Montoya moved to Los Angeles and joined a prestigious neurophysiology and neurorehabilitation lab at UCLA known for pioneering spinal stimulation and activity-based training to restore movement after paralysis. Now he’s taking everything he’s learned back to Georgia Tech.

Mitchell, also a faculty member in the Institute for Neuroscience, Neurotechnology, and Society, applies AI to data science to parse and predict complex medical research. She is also quadriplegic and personally understands the value of spinal cord research. At first, Mitchell mentored Montoya through the BME Ph.D. application process. Now she is his advisor. Montoya starts the program this fall — and he hopes to bring his personal injury recovery insights to the entire spinal cord injury survivor community.

 “My experience as a research participant gives me a unique perspective as I transition into a doctoral researcher,” he said. “It helps me bridge the gap between understanding the science and translating it into real-world clinical practice.”

From Complete Paralysis to Possibility 

Montoya nearly died in the accident. It left him with a complete spinal cord injury and severe peripheral nerve damage in his right arm.

“The doctor told me my spinal cord was like a banana — and mine had been crushed in the middle,” he recalled. “He said I had a 1% chance of regaining any mobility, function, or sensation.”

But Montoya’s life has always been about beating the odds. At 6, he and his father immigrated to the U.S. from Cuba. Years later, he earned a rated pilot slot in the Air Force — a distinction achieved by fewer than 1% of cadets. Then came the motorcycle crash. He flatlined for 15 minutes — a medical event with less than a 1% chance of survival, and even lower odds of returning with full brain function. If anyone was going to defy that prognosis, it was Montoya. He set out not just to walk again, but to rebuild his life and transform his recovery into a blueprint for others to follow.

Exoskeleton Endeavors 

After finishing his master’s at Tech, Montoya went to work with Reggie Egerton, a pioneering neurobiologist at UCLA. With Egerton’s guidance, Montoya experimented with neuromodulation — using electrodes to stimulate the spinal cord. The stimulus helps to excite the neurons below the injury that no longer communicate with the brain. 

While wearing electrodes, Montoya trained in a robotic exoskeleton that progressively reduced its robotic assistance. This encouraged him to contribute increasing effort through each step. Over time, the device provided less support during the swing and stance phases of walking, requiring more active participation. Beyond stepping, Montoya performed standing and weight-shifting exercises, all demanding maximum effort to retrain his nervous system through repetitive, weight-bearing sensory input. 

“Neuromodulation creates a bridge of signals that helps the remaining intact nerve fibers below the injury communicate with each other, enhancing neuroplasticity within the system,” he said.

If the neuromodulation works as intended, it can effectively remodel the nervous system. Through this process and two nerve transfers, Montoya has regained some function in his paralyzed right arm. He has also reversed many common medical complications from paralysis: temperature regulation, body awareness, sexual function, bone density, muscle mass, and digestive health.

“My injury is no longer considered complete, and I believe I’m the first person to achieve that through a combination of spinal stimulation, intensive training, and daily weight-bearing rehabilitation,” Montoya said. “I’m constantly out of my wheelchair — standing, moving, and training. That consistency has been the key. Every day, I walk in an exoskeleton.”

Returning to Georgia Tech

What was supposed to be a 12-month clinical research study turned into the next five years of Montoya’s life. He also wanted to better understand human physiology and how locomotor training worked, so he did a master’s in kinesiology from California State University, Los Angeles. Despite the progress Montoya had made with advancing the field of spinal cord injury and his own mobility, he wanted to bring all his expertise together. That’s when he happened to board a flight to Atlanta in the spring of 2024 with Cabrera.

Initially, Montoya and Mitchell connected so she could help guide him through the Ph.D. application process, but they quickly realized their research was complementary. Montoya is an expert in clinical trials, and Mitchell is an expert in taking clinical trial data and using AI to gather insights. 

“Ignacio wants to diversify his skill set and take his research career further, and data science is what he needs to do that,” Mitchell said. “We will look at his exoskeleton data and try to optimize the exoskeleton to the patient using AI.” 

For the start of his Ph.D., Montoya will remain in Los Angeles to continue his exoskeleton experiments in Edgerton’s lab, which has been collecting terabytes of data he’s never been able to analyze in full. Mitchell’s lab will analyze all that data and pull predictive insights that can feed back to Egerton’s lab and improve the patient experience. 

“AI can identify patterns the human eye wouldn't be able to detect,” Mitchell noted. “AI can help us better understand how and why an exoskeleton paired with spinal stimulation could help with spinal cord injury and function or quality of life.”

Montoya will travel between both coasts to conduct each element of the research before returning to Atlanta full-time. In the process, he’ll build a better knowledge base and exoskeleton training protocol.

This may not have been the path Montoya expected to take when he left Georgia Tech that night in 2012, but it’s a full circle.

“I’m back where my journey paused — this time to push the boundaries of what we believe the human body and spirit can achieve,” he said. “I’m not just walking again. I’m building a future where no one is beyond recovery.”

 

News Contact

Tess Malone, Senior Research Writer/Editor

tess.malone@gatech.edu

The Doctor Is In

Brandon Dixon and Shao-Yun Hsu pose in their lab, where they're working on a project to improve lymph node transplant surgery.

Brandon Dixon, left, and Shao-Yun Hsu are working to improve lymph node transplant surgery, a delicate procedure Hsu spent years training to perform as a microsurgeon in Taiwan. (Photo: Candler Hobbs)

Shao-Yun Hsu kept seeing the same name on research study after research study: Brandon Dixon, an engineer at Georgia Tech.

Hsu, a microsurgeon in Taiwan, was trying to figure out how to help her patients with lymphedema — an uncomfortable and life-limiting swelling in limbs that results from lymph nodes failing to drain fluid from an arm or leg.

Hsu had what she thought was a basic question: exactly how much fluid each small lymphatic vessel could drain. And as she dug into the clinical research, she saw Dixon’s name over and over.

Spoiler alert: There’s no good answer to Hsu’s question. At least not yet. But the search has brought her to Atlanta to pursue a biomedical engineering Ph.D. in Dixon’s lab.

Together, they’re embarking on a new project with support from the National Institutes of Health (NIH) that could one day help Hsu’s patients by making a lymph node transplant a viable option for many more people who suffer from lymphedema.

Read the full story on the College of Engineering website.

News Contact

Joshua Stewart
College of Engineering

Georgia Tech Launches Two New Interdisciplinary Research Institutes

Tech Tower

Georgia Tech has launched two new Interdisciplinary Research Institutes (IRIs): The Institute for Neuroscience, Neurotechnology, and Society (INNS) and the Space Research Institute (SRI). 

The new institutes focus on expanding breakthroughs in neuroscience and space, two areas where research and federal funding are anticipated to remain strong. Both fields are poised to influence research in everything from healthcare and ethics to exploration and innovation. This expansion of Georgia Tech’s research enterprise represents the Institute’s commitment to research that will shape the future.

“At Georgia Tech, innovation flourishes where disciplines converge. With the launch of the Space Research Institute and the Institute for Neuroscience, Neurotechnology, and Society, we’re uniting experts across fields to take on some of humanity’s most profound questions. Even as we are tightening our belts in anticipation of potential federal R&D budget actions, we also are investing in areas where non-federal funding sources will grow and where big impacts are possible,” said Executive Vice President for Research Tim Lieuwen. "These institutes are about advancing knowledge — and using it to improve lives, inspire future generations, and help shape a better future for us all.”

Both INNS and SRI grew out of faculty-led initiatives shaped by a strategic planning process and campus-wide collaboration. Their evolution into formal institutes underscores the strength and momentum of Georgia Tech’s interdisciplinary research enterprise. 

Georgia Tech’s 11 IRIs support collaboration between researchers and students across the Institute’s seven colleges, the Georgia Tech Research Institute (GTRI), national laboratories, and corporate entities to tackle critical topics of strategic significance for the Institute as well as for local, state, national, and international communities.

"IRIs bring together Georgia Tech researchers making them more competitive and successful in solving research challenges, especially across disciplinary boundaries,” said Julia Kubanek, vice president of interdisciplinary research. “We're making these new investments in neuro- and space-related fields to publicly showcase impactful discoveries and developments led by Georgia Tech faculty, attract new partners and collaborators, and pursue alternative funding strategies at a time of federal funding uncertainty."

The Space Research Institute

The Space Research Institute will connect faculty, students, and staff who share a passion for space exploration and discovery. They will investigate a wide variety of space-related topics, exploring how space influences and intersects with the human experience. The SRI fosters a collaborative community including scientific, engineering, cultural, and commercial research that pursues broadly integrated, innovative projects.

SRI is the hub for all things space-related at Georgia Tech. It connects the Institute’s schools, colleges, research institutes, and labs to lead conversations about space in the state of Georgia and the world. Working in partnership with academics, business partners, philanthropists, students, and governments, Georgia Tech is committed to staying at the forefront of space-related innovation.   

The SRI will build upon the collaborative work of the Space Research Initiative, the first step in formalizing Georgia Tech’s broad interdisciplinary space research community. The Initiative brought together researchers from across campus and was guided by input from Georgia Tech stakeholders and external partners. It was led by an executive committee including Glenn Lightsey, John W. Young Chair Professor in the Daniel Guggenheim School of Aerospace Engineering; Mariel Borowitz, associate professor in the Sam Nunn School of International Affairs; and Jennifer Glass, associate professor in the School of Earth and Atmospheric Sciences. Beginning July 1, W. Jud Ready, a principal research engineer in GTRI’s Electro-Optical Systems Laboratory, will serve as the inaugural executive director of the Space Research Institute.

To receive the latest updates on space research and innovation at Georgia Tech, join the SRI mailing list

The Institute for Neuroscience, Neurotechnology, and Society

The Institute for Neuroscience, Neurotechnology, and Society (INNS) is dedicated to advancing neuroscience and neurotechnology to improve society through discovery, innovation, and engagement. INNS brings together researchers from neuroscience, engineering, computing, ethics, public policy, and the humanities to explore the brain and nervous system while addressing the societal and ethical dimensions of neuro-related research.

INNS builds on a foundation established over a decade ago, which first led to the GT-Neuro Initiative and later evolved into the Neuro Next Initiative. Over the past two years, this effort has culminated in the development of a comprehensive plan for an IRI, guided by an executive committee composed of faculty and staff from across Georgia Tech. The committee included Simon Sponberg, Dunn Family Associate Professor in the School of Physics and the School of Biological Sciences; Christopher Rozell, Julian T. Hightower Chaired Professor in the School of Electrical and Computer Engineering; Jennifer Singh, associate professor in the School of History and Sociology; and Sarah Peterson, Neuro Next Initiative program manager. Their leadership shaped the vision for a research community both scientifically ambitious and socially responsive.

INNS will serve as a dynamic hub for interdisciplinary collaboration across the full spectrum of brain-related research — from biological foundations to behavior and cognition, and from fundamental research to medical innovations that advance human flourishing. Research areas will encompass the foundations of human intelligence and movement, bio-inspired design and neurotechnology development, and the ethical dimensions of a neuro-connected future. 

By integrating technical innovation with human-centered inquiry, INNS is committed to ensuring that advances in neuroscience and neurotechnology are developed and applied ethically and responsibly. Through fostering innovation, cultivating interdisciplinary expertise, and engaging with the public, the institute seeks to shape a future where advancements in neuroscience and neurotechnology serve the greater good. INNS also aims to deepen Georgia Tech’s collaborations with clinical, academic, and industry partners, creating new pathways for translational research and real-world impact.

An internal search for INNS’s inaugural executive director is in the final stages, with an announcement expected soon.

Join our mailing list to receive the latest updates on everything neuro at Georgia Tech.

News Contact

Laurie Haigh
Research Communications

Protein Problem: Challenging A Fundamental Assumption in Evolutionary Biochemistry

Schematic representation of cofactor-bound Walker A P-loops.

Schematic representation of cofactor-bound Walker A P-loops. This figure is adapted from Demkiv et al., Mol. Biol. Evol. 2025, 42, msaf055, originally published under a CC-BY license.

How did life originate? Ancient proteins may hold important clues. Every organism on Earth is made up of proteins. Although all organisms — even single-celled ones — have complex protein structures now, this wasn’t always the case.  

For years, evolutionary biochemists assumed that the most ancient proteins emerged from a simple signature, called a motif. New research, though, suggests that this motif, without the surrounding protein, isn’t as consequential as it seemed. The international team of researchers was led by Lynn Kamerlin, a professor in the Georgia Tech School of Chemistry and Biochemistry and Georgia Research Alliance Vasser Woolley Chair in Molecular Design, and Liam Longo, a specially appointed associate professor at Earth-Life Science Institute at Institute of Science Tokyo, in Japan. 

“It’s probably an eroded molecular fossil, with its true nature having been overwritten over billions of years of evolution,” said Kamerlin. “This work completely reshapes how we think about proteins. It’s like trying to play protein Jeopardy! — now we need to rethink what the original question was.” 

 Prehistoric Proteins 

It's not hard to understand why this hypothesis was wrong for so long. The motif is associated with the element phosphorus, one of the key elements of life. Many of the earliest proteins bound to phosphorus-containing compounds. While these early proteins have different structures, they frequently share the same motif. 

“For years, researchers took this to mean that today’s complex proteins came from the motif itself — that this tiny protein gave rise to entire families,” Longo said.  

To discover the protein’s origins, the researchers pored over available data on protein crystal structures. Then they identified and characterized relevant proteins computationally. Although they recognized some of the protein’s similar structure in their modeling, the motif was not identical. They found that many different types of phosphate-binding proteins were possible. The idea that this motif was somehow special on its own was false.  

“We don’t hypothesize that eyes gave rise to heads, even though nearly all heads have eyes; that’s because seeing involves interlocking systems,” Kamerlin said. “Our early peptide presents a similar instance. Only embedding within the larger system allows it to shine.” 

Protein Possibilities 

The researchers tested this work in water and methanol environments. Methanol mimics environments on Earth that may have less water around. The researchers found comparable protein motifs in this methanol environment, proving that the famous motif was not unique, but rather one of many possible motifs with similar properties. What was assumed to be a building block of early life is probably just a fossil fragment — and not the complete picture. 

Kamerlin and Longo’s work helps their field determine not just how life started but also bolsters biotechnology advancements. A better understanding of how natural proteins evolved will help other researchers create artificial proteins, for everything from drug delivery to new vaccines.  

The work is far from finished. Now that the researchers know this protein motif is one of many possible options, the question becomes: When did this motif become dominant, and what else could life have looked like? These questions will help the scientific world make discoveries that could benefit everyone.  

Funding from the Knut and Alice Wallenberg Foundation; the Okinawa Institute of Science and Technology Graduate University (OIST) with subsidy funding from the Cabinet Office, Government of Japan; and the National Academic Infrastructure for Supercomputing in Sweden. 

News Contact

Tess Malone, Senior Research Writer/Editor

tess.malone@gatech.edu

Cyberinfrastructure & Services for Science and Engineering Workshop

This one-day workshop introduces Georgia Tech faculty to the cyberinfrastructure (CI) resources, technologies, and services available to support research and teaching—both at the institute and through national platforms.
 
Participants will also have the hands-on opportunity to explore the resources available for research through Georgia Tech PACE and through ACCESS.
 

Cyberinfrastructure & Services for Science and Engineering Workshop

This one-day workshop introduces Georgia Tech faculty to the cyberinfrastructure (CI) resources, technologies, and services available to support research and teaching—both at the institute and through national platforms.
 
Participants will also have the hands-on opportunity to explore the resources available for research through Georgia Tech PACE and through ACCESS.
 

Newly Named Children’s PTC at Georgia Tech Peterson Professorship Recipients Work to Improve the Lives of Kids in Georgia and Beyond

Michelle LaPlaca (left), associate chair for Faculty Development and professor in the Department of Biomedical Engineering; W. Hong Yeo, Harris Saunders, Jr. Professor in the George W. Woodruff School of Mechanical Engineering.

Michelle LaPlaca (left), associate chair for Faculty Development and professor in the Department of Biomedical Engineering; W. Hong Yeo, Harris Saunders, Jr. Professor in the George W. Woodruff School of Mechanical Engineering.

Georgia Tech professors Michelle LaPlaca and W. Hong Yeo have been selected as recipients of Peterson Professorships with the Children’s Healthcare of Atlanta Pediatric Technology Center (PTC) at Georgia Tech. The professorships, supported by the G.P. “Bud” Peterson and Valerie H. Peterson Faculty Endowment Fund, are meant to further energize the Georgia Tech and Children’s partnership by engaging and empowering researchers involved in pediatrics.

In a joint statement, PTC co-directors Wilbur Lam and Stanislav Emelianov said, “The appointment of Dr. LaPlaca and Dr. Yeo as Peterson Professors exemplifies the vision of Bud and Valerie Peterson — advancing innovation and collaboration through the Pediatric Technology Center to bring breakthrough ideas from the lab to the bedside, improving the lives of children and transforming healthcare.”

LaPlaca is a professor and associate chair for Faculty Development in the Department of Biomedical Engineering, a joint department between Georgia Tech and Emory University. Her research is focused on traumatic brain injury and concussion, concentrating on sources of heterogeneity and clinical translation. Specifically, she is working on biomarker discovery, the role of the glymphatic system, and novel virtual reality neurological assessments.    

“I am thrilled to be chosen as one of the Peterson Professors and appreciate Bud and Valerie Peterson’s dedication to pediatric research,” she said. “The professorship will allow me to broaden research in pediatric concussion assessment and college student concussion awareness, as well as to identify biomarkers in experimental models of brain injury.”

In addition to the research lab, LaPlaca will work with an undergraduate research class called Concussion Connect, which is part of the Vertically Integrated Projects program at Georgia Tech.

“Through the PTC, Georgia Tech and Children’s will positively impact brain health in Georgia’s pediatric population,” said LaPlaca.

Yeo is the Harris Saunders, Jr. Professor in the George W. Woodruff School of Mechanical Engineering and the director of the Wearable Intelligent Systems and Healthcare Center at Georgia Tech. His research focuses on nanomanufacturing and membrane electronics to develop soft biomedical devices aimed at improving disease diagnostics, therapeutics, and rehabilitation.

“I am truly honored to be awarded the Peterson Professorship from the Children’s PTC at Georgia Tech,” he said. “This recognition will greatly enhance my research efforts in developing soft bioelectronics aimed at advancing pediatric healthcare, as well as expand education opportunities for the next generation of undergraduate and graduate students interested in creating innovative medical devices that align seamlessly with the recent NSF Research Traineeship grant I received. I am eager to contribute to the dynamic partnership between Georgia Tech and Children’s Healthcare of Atlanta and to empower innovative solutions that will improve the lives of children.”

The Peterson Professorships honor the former Georgia Tech President and First Lady, whose vision for the importance of research in improving pediatric healthcare has had an enormous positive impact on the care of pediatric patients in our state and region.

The Children’s PTC at Georgia Tech brings clinical experts from Children’s together with Georgia Tech scientists and engineers to develop technological solutions to problems in the health and care of children. Children’s PTC provides extraordinary opportunities for interdisciplinary collaboration in pediatrics, creating breakthrough discoveries that often can only be found at the intersection of multiple disciplines. These collaborations also allow us to bring discoveries to the clinic and the bedside, thereby enhancing the lives of children and young adults. The mission of the PTC is to establish the world’s leading program in the development of technological solutions for children’s health, focused on three strategic areas that will have a lasting impact on Georgia’s kids and beyond.

New Wearable Device Monitors Skin Health in Real Time

The wireless device measures only two centimeters in length and one-and-a-half centimeters in width, and is the first of its kind to continuously monitor the skin's exchange of vapors with the environment.

The wireless device measures only two centimeters in length and one-and-a-half centimeters in width, and is the first of its kind to continuously monitor the skin's exchange of vapors with the environment.

From sun damage and pollution to cuts and infections, our skin protects us from a lot. But it isn’t impenetrable.

“We tend to think of our skin as being this impermeable barrier that’s just enclosing our body,” said Matthew Flavin, assistant professor in the School of Electrical and Computer Engineering. “Our skin is constantly in flux with the gases that are in our environment and our atmosphere.”

Led by the Georgia Institute of Technology, Northwestern University, and the Korea Institute of Science and Technology (KIST), researchers have developed a novel wearable device that can monitor the flux of vapors through the skin, offering new insights into skin health and wound healing. This technology, detailed in a recent Nature publication, represents a significant advancement in the field of wearable bioelectronics.

“You could think of this being used where a Band-Aid is being used,” said Flavin, one of the lead authors of the study. The compact, wireless device is the first wearable technology able to continuously and precisely measure water vapor, volatile organic compounds, and carbon dioxide fluxes in the skin in real time. Because increases in these factors are associated with infection and delayed healing, Flavin notes that this kind of wireless monitoring “could give clinicians a new tool to understand the properties of the skin.”

The Measurement Barrier

Our skin is our first line of defense against environmental hazards. Measuring how effectively it protects us from harmful pollutants or infections has been a significant challenge, especially over extended periods.

“The vapors coming from your skin are in very, very low concentration,” explained Flavin. “If we just put a sensor next to your skin, it would be almost impossible to control that measurement.”

The new device features a small chamber that condenses and measures vapors from the skin using specialized sensors hovering above the skin. A low-energy, bi-stable mechanism periodically refreshes the air in the chamber, allowing for continuous measurements communicated to a smartphone or tablet through Bluetooth.

“There are other devices that can measure certain parts of what we're talking about here,” said Flavin, “but they are not feasible for a wearable device, can't do this continuously, and are not able to get all the information that our device can get.”

Scratching the Surface

By tracking the skin's water vapor flux, also known as transepidermal water loss, the device can assess skin barrier function and wound healing. This capability is particularly valuable for tracking the healing process in diabetic patients, who often have sensory issues that complicate wound monitoring. “What you see in diabetes is that even after the wound looks like it's healed, there's still a persistent impairment of that barrier,” said Flavin. This new non-invasive device tracks those properties. 

“There are many areas where people don't have great access to healthcare, and there aren’t doctors monitoring wound healing processes,” Flavin added. “Something that can be used to monitor that remotely could make care more accessible to people with these conditions.”

The device’s wearable nature also makes it ideal for studying the long-term effects of exposure to environmental hazards like wildfires or chemical fumes on skin function and overall health.

Though the applications in health are numerous, the research team is continuing to explore different ways to use the device. “This measurement modality is very new and we're still learning what we can do with it,” saidJaeho Shin, a senior researcher at KIST and a co-leader of the study. “It's a new way of measuring what's inside the body.” 

“This is a great example of the kind of technology that can emerge from research at the interface between engineering science and medical practice,” said John Rogers, a materials science professor at Northwestern and another co-leader of the study. “The capabilities provided by this device will not only improve patient care, but they will also lead to improved understanding of the skin, the skin microbiome, the processes of wound healing, and many others.”

As a new faculty member and a member of Georgia Tech’s Neuro Next Initiative, a burgeoning interdisciplinary research hub for neuroscience, neurotechnology, and society, Flavin attributes the success of this research to its interdisciplinary nature.

“A broad challenge we have in these fields of research is that they integrate a lot of different areas. One of the reasons I came to Georgia Tech is because it's a place where you have access to all those different areas of expertise.”

DOI: https://doi.org/10.1038/s41586-025-08825-2

Funding: Querrey-Simpson Institute for Bioelectronics and the Center for Advanced Regenerative Engineering (CARE), Northwestern University; National Research Foundation of Korea; National Institutes of Health (NIH), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Biomedical Imaging and Bioengineering.

News Contact

Writer: Audra Davidson
Research Communications Program Manager
Neuro Next Initiative

Media contact: Angela Barajas Prendiville
Director
Institute Media Relations

Voices of the Mind: Short Documentaries on Brain-Based Conditions

Join us for a showcase of short documentaries created by Georgia Tech Students in Sociology of Medicine and Health under the direction of Dr. Jennifer Singh. The documentaries will highlight the lived experiences of living with brain-based conditions - from mental health to brain injury. All are welcome and refreshments will be provided.