
Raquel Lieberman
Professor
raquel.lieberman@chemistry.gatech.edu
404-385-3663
Office Location:
Petit Biotechnology Building, Office 1308
Georgia Institute of Technology
Georgia Tech School of Chemistry and Biochemistry
Research Focus Areas:
Additional Research:
The Lieberman research group focuses on biophysical and structural characterization of proteins involved in misfolding disorders. One major research project in the lab has been investigations of the glaucoma-associated myocilin protein. The lab has made major strides toward detailed molecular understanding of myocilin structure, function, and disease pathogenesis. Our research has clearly demonstrated similarities between myocilin glaucoma and other protein misfolding disorders, particularly amyloid diseases. The work has led to new efforts aimed at amelioratingthe misfolding phenotype using chemical biology approaches. Our second project involves the study of membrane-spanning proteolytic enzymes, which have been implicated disorders such as Alzheimer disease. Our group is tackling questions surrounding discrimination among and presentation of transmembrane substrates as well as the enzymatic details of peptide hydrolysis. In addition to the biochemical characterization of intramembrane aspartyl proteases, our group is developing new crystallographic tools to improve the likelihood of determining structures of similarly challenging membrane proteins more generally.
The Lieberman research group focuses on biophysical and structural characterization of proteins involved in misfolding disorders. One major research project in the lab has been investigations of the glaucoma-associated myocilin protein. The lab has made major strides toward detailed molecular understanding of myocilin structure, function, and disease pathogenesis. Our research has clearly demonstrated similarities between myocilin glaucoma and other protein misfolding disorders, particularly amyloid diseases. The work has led to new efforts aimed at amelioratingthe misfolding phenotype using chemical biology approaches. Our second project involves the study of membrane-spanning proteolytic enzymes, which have been implicated disorders such as Alzheimer disease. Our group is tackling questions surrounding discrimination among and presentation of transmembrane substrates as well as the enzymatic details of peptide hydrolysis. In addition to the biochemical characterization of intramembrane aspartyl proteases, our group is developing new crystallographic tools to improve the likelihood of determining structures of similarly challenging membrane proteins more generally.
Research Affiliations: Immunoengineering, Center for ImmunoEngineering, Center for Drug Design Development & Delivery, Center for Nanobiology of the Macromolecular Assembly Disorders - NanoMAD
IRI Connection: