The Nuts and Bolts of **Probabilistic State Space Models**

Part I: Foundations

Scott Linderman **Stanford University**

Part I: Foundations

- Motivating Examples
- State Space Models (SSMs)
 - Hidden Markov Models
 - Linear Dynamical Systems
 - Nonlinear & Switching Linear Dynamical Systems
- Learning and Inference Algorithms
 - **Expectation-Maximization**
 - Message Passing
 - Approximate Inference (E/UKF, SMC, VI)
- Code Pointers

Outline

Part II: Trends

- Better Models
 - Time-Warped and Keypoint-MoSeq
 - Simple State Space Layers (S5)

Better Algorithms

- Variational Laplace-EM
- Smoothing Inference with Twisted Objectives (SIXO)
- Structured Variational Autoencoders (SVAE)

The Hodgkin-Huxley Model

The Hodgkin-Huxley Model

V [mV]

Compartment 1

Compartment 2

Hochbaum et al (2014)

Voltage imaging data is noisy and relatively slow. Rather than simply interpolating, we can use the Hodgkin-Huxley model to smooth it.

Application: Low-dimensional dynamics of neural population activity

Shenoy Lab, Stanford

Application: Low-dimensional dynamics of neural population activity discrete state 1 dynamics N dim. din y_t y_{t+1} state x_{t+1} $\dot{\mathbf{o}} x_t$ continuous continuous state dim.1 y_2 neuron 2 discrete state 2 dynamics ineuron1 dim. neuron N

continuous state dim.1

Application: Low-dimensional dynamics of neural population activity

Kato et al (2015)

Application: Predicting seizure onset in EEG data

Davis et al (2016)

- EEG dynamics change in characteristic ways at the onset of a seizure.
- State space models detect seizures seconds ahead of unequivocal epileptic activity.
- Better predictions could improve real time by anti-epileptic devices.

Application: Segmenting behavioral video into "syllables"

centered and aligned video

Application: Segmenting behavioral video into "syllables"

down and dart

scrunch

run forward

grooming

rear up

get out!

Part I: Foundations

- Motivating Examples
- State Space Models (SSMs)
 - Hidden Markov Models
 - Linear Dynamical Systems
 - Nonlinear & Switching Linear Dynamical Systems
- Learning and Inference Algorithms
 - **Expectation-Maximization**
 - Message Passing
 - Approximate Inference (E/UKF, SMC, VI)
- Code Pointers

Outline

Frame 30

State Space Models (SSM's)

Time

Anatomy of a state space model

observations

 \bigcirc = latent

1. Dynamics: evolution of latent state

$$x_t \sim p(x_t \mid x_{t-1})$$

$$\bigcirc$$
 = observed \rightarrow = dependency

2. Observation model:

connecting states and neural observations

$$y_t \sim p(y_t \mid x_t)$$

Extensions: Exogenous inputs

Extensions: Non-Markovian dynamics

- Type of states and observations: - Discrete, continuous, mixed?
- Class of observation and dynamics functions: - Linear vs nonlinear? Any constraints?
- Noise distributions:
 - Gaussian, Poisson, heavy-tailed, overdispersed?
- Discrete vs continuous time:
- Prior distributions; parameter sharing?

Design decisions

Taxonomy of state space models

Observation Model and Type

	Continuous Linear	Counts Generalized Linear	Nonlinear observation models				
Discrete Linear	HMM Rabiner (1989)	HMM Rabiner (1989)	Structured VAE Johnson et al (2016)				
Continuous Linear	LDS Kalman (1960)	Poisson LDS Smith and Brown (2003), Paninski et al (2010), Macke et al (2011)	Deep PfLDS Archer et al (2016), Gao et al (2016)				
Mixed Switching Linear	SLDS Ghahramani and Hinton (1996) Murphy (1998)	Poisson SLDS Petreska et al (2013)	Structured VAE Johnson et al (2016)				
Mixed Recurrent Linear	recurrent/augmented SLDS Barber (2006); Pachitariu et al (2014); Linderman et al (2017); Nassar et al (2019)	rSLDS Linderman et al (2017) Nassar et al (2019) Zoltowski et al (2020)	Structured VAE Johnson et al (2016)				
Continuous Nonlinear (parametric)	NLDS, e.g. Hodgkin-Huxley Ahrens, Huys, Paninski (2006) Huys and Paninski (2009)	NLDS, e.g. Hodgkin-Huxley Meng, Kramer, Eden (2011)	GPSSM, DKF, LFADS, VIND Frigola et al (2013) , Krishnan et al (2015), Sussillo et al (2016), Hernandez et al (2018), Pandarinath et al (2018)				
Continuous Nonlinear (smoothing)	GPFA Yu, Cunningham, et al (2009)	vLGP Zhao and Park (2017)	GPLVM Wu et al (2017)				
Continuous Nonlinear (nonparametric)	GPSSM, DKF, LFADS, VIND Frigola et al (2013) , Krishnan et al (2015), Sussillo et al (2016), Hernandez et al (2018)	GPSSM, DKF, LFADS, VIND Frigola et al (2013) , Krishnan et al (2015), Sussillo et al (2016), Hernandez et al (2018)	GPSSM, DKF, LFADS, VIND Frigola et al (2013), Krishnan et al (2015), Sussillo et al (2016), Hernandez et al (2018), Pandarinath et al (2018)				

and Type Model Dynamics

Hidden Markov Models

Behavioral "Syllables"

down and dart

scrunch

run forward

rear up

get out!

Hidden Markov Models

discrete states

neural observations

Dynamics: transition matrix

 $z_{t+1} \mid z_t \sim \operatorname{Cat}(\pi_{z_t})$

Observation model: different parameters for each discrete state

$$y_t \sim p(y_t; \theta_{z_t})$$

Visualizing discrete dynamics

$$oldsymbol{P} = egin{bmatrix} - & oldsymbol{\pi}_1 & - \ - & oldsymbol{\pi}_2 & - \ & \ddots & \ - & oldsymbol{\pi}_K & - \end{bmatrix}$$

Visualization of a Gaussian HMM

*Y*₂

*Y*₁

Simulated data from an HMM

HMMs for characterizing the spatiotemporal structure of SWRs

>

А

Krause & Drugowitsch (2022)

HMM-GLMs for characterizing behavior

Linear Dynamical Systems

Linear dynamical systems - continuous, sequential latents

continuous states

observations

Dynamics: Linear, Gaussian

 $x_{t+1} \mid x_t \sim \mathcal{N}(Ax_t + b, Q)$

Observation model: Generalized Linear

 $y_t \mid x_t \sim \mathcal{P}(f(Cx_t + D))$

Visualizing a Gaussian LDS

For spiking data data: spike count observations

 $y_t \mid x_t \sim \text{Poisson}(\exp(Cx_t + D))$

0.0

Linear dynamical systems can't do all that much...

 $x_{t,1}$

	•	•	4	4	4	4	-	-	-	+	-	-	4	ł	Ţ	Ţ	1
4	+	+	*	*	*	*	*	*	*	¥ J	ľ	Ţ	Ţ	Ţ	Ţ	ţ	ţ
1	*	*/	*/	*	*	ľ	1	1	1	Ţ	ţ	ţ	¥	¥	¥	¥	♦
¥	*	1	1	1	1	1	1	4	4	4	¥	+	*	¥	¥	*	*
	1	1	1	1	4	4	*	+	*	*	*	*	*	۷	۷	۲	¥
	1	4	*	*	4	¥	*	*	*	۲	۲	۷	۷	۷	۳	۷	4
4	¥	¥	¥	*	¥	*	۶	۶	۲	۲	۲	۷	۳	۳	۲	•	4
¥	¥	¥	۲	¥	۴	۲		۲	۲	٣	٣	۳	4	*	*	*	۲
¥	¥	¥	۴	•	►	►	•	۲	۲	,				*	٣	٣	*
×	-			*	*	*	*					*	*	4	•	•	4
		*		*	٩				*	4	•	•	•	•	-	-	1
*		*	۲	*	,	*	*	*	4	4	4	4	-	-	1	1	1
۲	•	۲	×	*	*	*		4	4	4	4	4	1	1	1	1	1
*	×			*	*		4	4	4	4	1	1	1	1	1	1	1
•		٨	•	*	*	*	4	1	1	1	1	1	1	1	7	7	/
•	*	•	*	4	1	1	1	1	1	1	T	7	T		1	1	/
•	•	•	1	1	1	1	1	1	1	7	<i>Т</i>	1	ſ		1	1	/
	1	1	1	1	1	T ▲	T A	T A	ſ ▲		1	1	1	1	1	1	/
	1	Ť	Ť	T	T	T	ſ			/		/	/	/	/	/	

Lorenz Attractor

Beyond linear dynamics

Fitzhugh-Nagumo Model

 $\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \begin{bmatrix} x_1 - x_1^3 - x_2\\ \tau^{-1}(x_1 + a - bx_2) \end{bmatrix}$

A Taxonomy of state space models

Observation Model (data type, function class, noise model)

del)		Continuous Linear Gaussian	Discrete (Gen.) Linear Bernoulli/Poisson/etc.	
odel noise mo	Discrete Markovian Categorical	HMM Rabiner (1989)	HMM Rabiner (1989)	
amics Mo n class, I	Continuous Linear Gaussian	LDS Kalman (1960)	Poisson LDS Smith and Brown (2003) Paninski et al (2010) Macke et al (2011)	
Dyn e, functic	Continuous Nonlinear Gaussian	NLDS Ahrens, Huys, Paninski (2006) Huys and Paninski (2009)	NLDS Meng, Kramer, Eden (2011)	
(typ				

Learning nonlinear dynamical systems

Pandarinath et al (2018)

 Specify a class of nonlinear functions, e.g. those parameterized by weights of a neural network or by a Gaussian process.

- How to choose a good function class?
- How to fit with limited data?
- How to interpret dynamics?
- More to come in Part II, but first...

Linear dynamical systems can't do all that much...

 $x_{t,1}$

	•	•	4	4	4	4	-	-	-	+	-	-	4	ł	Ţ	Ţ	1
4	+	+	*	*	*	*	*	*	*	¥ J	ľ	Ţ	Ţ	Ţ	Ţ	ţ	ţ
1	*	*/	*/	*	*	ľ	1	1	1	Ţ	ţ	ţ	¥	¥	¥	¥	♦
¥	*	1	1	1	1	1	1	4	4	4	¥	+	*	¥	¥	*	*
	1	1	1	1	4	4	*	+	*	*	*	*	*	۷	۷	۲	¥
	1	4	*	*	4	¥	*	*	*	۲	۲	۷	۷	۷	۳	۷	4
4	¥	¥	¥	*	¥	۶	۶	۶	۲	۲	۲	۷	۳	۳	۲	•	4
¥	¥	¥	۲	¥	۴	۲		۲	۲	٣	٣	۳	4	*	*	*	۲
¥	¥	¥	۴		►	►	•	۲	۲	,				*	٣	٣	*
×				*	*	*	*					*	*	4	•	•	4
		*		*	٩				*	4	•	•	•	•	-	-	1
*		*	۲	*	,	*	*	*	4	4	4	4	-	-	1	1	1
۲	•	۲	×	*	*	*		4	4	4	4	4	1	1	1	1	1
*	×			*	*	•	4	4	4	4	1	1	1	1	1	1	1
•		٨	•	*	*	*	4	1	1	1	1	1	1	1	7	7	/
•	*	•	*	4	1	1	1	1	1	1	T	7	T		1	1	/
•	•	•	1	1	1	1	1	1	1	7	<i>Т</i>	1	ſ		1	1	/
	1	1	1	1	1	T ▲	T A	T A	ſ ▲		1	1	1	1	1	1	/
	1	Ť	Ť	T	T	T	ſ			/		/	/	/	/	/	

Switching linear dynamical systems (SLDS)

Discrete Latent States

Continuous Latent States

Observations

Dynamics:

 $z_{t+1} \mid z_t \sim \operatorname{Cat}(\pi_{z_t})$ $x_{t+1} \mid x_t, z_t \sim \mathcal{N}(A_{z_t}x_t + b_{z_t}, Q_{z_t})$

Observation model:

 $y_t \mid x_t \sim \mathcal{P}(f(Cx_t + D))$

SLDS can approximate nonlinear dynamical systems

Specifying the form of the dependencies

Discrete Latent State Dynamics

Continuous Latent State Dynamics

Observation Model

A Taxonomy of state space models

Observation Model (data type, function class, noise model)

del)		Continuous Linear Gaussian			
(type, function class, noise mo	Discrete Markovian Categorical	HMM Rabiner (1989)			
	Continuous Linear Gaussian	LDS Kalman (1960)			
	Continuous Nonlinear (parametric) Gaussian	NLDS, e.g. Hodgkin-Huxley Ahrens, Huys, Paninski (2006) Huys and Paninski (2009)			
	Mixed Switching Linear	SLDS Ghahramani and Hinton (1996) Murphy (1998)			

Dynamics Model

Discrete (Gen.) Linear Bernoulli/Poisson/etc.	
HMM Rabiner (1989)	
Poisson LDS Smith and Brown (2003), Paninski et al (2010) Macke et al (2011)	
NLDS, e.g. Hodgkin-Huxley Meng, Kramer, Eden (2011)	
Poisson SLDS Petreska et al (2013)	

Problem: SLDS don't know when to switch!

Smarter switching with "Recurrent" SLDS

parameters

discrete latent states

continuous latent states

observed neural activity $(\Delta F/F_0)$

• •

Linderman et al. (2017) Nassar et al. (2019)

Barber (2006)

Recurrent dependencies carve up continuous space into regions with different dynamics

 $x_{t,1}$

Linderman et al. (2017) Nassar et al. (2019)

Barber (2006)

Recurrent switching linear dynamical systems

True Dynamics

SLDS Generated States

Inferred Dynamics

rSLDS Generated States

A Taxonomy of state space models

Observation Model (data type, function class, noise model)

eI)		Continuous Linear Gaussian	Discrete (Gen.) Linear Bernoulli/Poisson/etc.	
se mod	Discrete Markovian Categorical	HMM Rabiner (1989)	HMM Rabiner (1989)	
ass, noi	Continuous Linear Gaussian	LDS Kalman (1960)	Poisson LDS Smith and Brown (2003), Paninski et al (2010) Macke et al (2011)	
	Continuous Nonlinear (parametric) Gaussian	NLDS, e.g. Hodgkin-Huxley Ahrens, Huys, Paninski (2006) Huys and Paninski (2009)	NLDS, e.g. Hodgkin-Huxley Meng, Kramer, Eden (2011)	
/pe, run	Mixed Switching Linear	SLDS Ghahramani and Hinton (1996) Murphy (1998)	Poisson SLDS Petreska et al (2013)	
	Mixed Recurrent Linear	recurrent/augmented SLDS Barber (2006); Pachitariu et al (2014); Linderman et al (2017); Nassar et al (2019)	rSLDS Linderman et al (2017) Nassar et al (2019)	

Dynamics Model

Hierarchical model uncovering states of worm dynamics

Linderman et al (2019)

Interactions between brain-regions with multi-region rSLDS

Glaser et al (2020)

Unifying and generalizing neural dynamics during decision-making

Gold and Shadlen, 2007 Churchland et al., 2008

time

Zoltowski et al (2020)

flow field of VMHvl (mouse 1 - intruder 1) related to Figure 3

An approximate line attractor in the hypothalamus that encodes an aggressive internal state Aditya Nair, Tomomi Karigo, Bin Yang, Scott Linderman David J Anderson* & Ann Kennedy*

Part I: Foundations

- Motivating Examples
- State Space Models (SSMs)
 - Hidden Markov Models
 - Linear Dynamical Systems
 - Nonlinear & Switching Linear Dynamical Systems
- Learning and Inference Algorithms
 - **Expectation-Maximization**
 - Message Passing
 - Approximate Inference (E/UKF, SMC, VI)
- Code Pointers

Outline

Bayesian Learning and Inference Challenges

Simpler model, same problem:

parameters

latent variables

observed data

Learning Goal: find parameters that maximize *marginal likelihood*:

$$\Theta^{\star} = \arg \max p(y; \Theta)$$

= $\arg \max \int p(y, \varphi)$

Inference Goal: approximate the *posterior distribution* of latent variables:

$$p(z \mid y; \Theta) = \frac{p(y, z; \Theta)}{p(y; \Theta)}$$
$$= \frac{p(y, z; \Theta)}{\int p(y, z; \Theta) \, dz}$$

 $z;\Theta)\,\mathrm{d}z$

Evaluate posterior expectations of interest:

• Expected latent states (smoothing):

$$\mathbb{E}_{p(z|y;\Theta)}\left[z_t\right]$$

$$\mathbb{E}_{p(z|y;\Theta)}\left[\mathbb{I}[z_t=k]\right]$$

• Second moments (covariances):

$$\mathbb{E}_{p(z|y;\Theta)} \left[z_t z_{t+1}^{\mathsf{T}} \right]$$

• Expected observations (reconstruction):

$$\mathbb{E}_{p(z|y;\Theta)}\left[g(z_t)\right]$$

• Future observations (prediction):

$$\mathbb{E}_{p(z|y;\Theta)}\left[g(f(z_T))\right]$$

• Expected log joint probability:

 $\mathbb{E}_{p(z|y;\Theta)}\left[\log p(z,y;\Theta')\right]$

othing):

Methods of approximate Bayesian inference

Exact Inference

Sequential Monte Carlo Markov Chain Monte Carlo

Laplace Approximation

Variational Inference

Exact Inference: The algebraic way

$$p(y) = \sum_{z_T} \cdots \sum_{z_2} \sum_{z_1} p(z_1, \dots, z_T, y_1, \dots, x_T)$$

$$= \sum_{z_T} \cdots \sum_{z_2} \sum_{z_1} p(z_1) p(y_1 \mid z_1) p(z_2 \mid z_1)$$

$$= \sum_{z_T} \cdots \sum_{z_2} \sum_{z_1} p(z_1) p(y_1 \mid z_1) p(z_2 \mid z_1)$$

$$= \sum_{z_T} \cdots \sum_{z_2} \alpha(z_2; y_1) p(y_2 \mid z_2) p(z_3 \mid z_1)$$

$$= \sum_{z_T} \alpha(z_T; y_1, \dots, y_{T-1}) p(z_T \mid z_{T-1})$$

*Once we have the marginal likelihood, we can derive similar algorithms to compute expectations of interest.

 $y_T)$

 $(z_1) p(y_2 | z_2) p(z_3 | z_2) \dots p(z_T | z_{T-1}) p(y_T | z_T)$ z_1) $p(y_2 \mid z_2) p(z_3 \mid z_2) \dots p(z_T \mid z_{T-1}) p(y_T \mid z_T)$ $z_2) \dots p(z_T \mid z_{T-1}) p(y)$) $p(y_T \mid z_T)$

Incoming message

Condition on observations

Marginalize out previous state

marginalize over previous state

marginalize over previous state

condition on observations

condition on observations

marginalize over previous state

marginalize over previous state

condition on observations

marginalize over previous state

condition on observations

marginalize over previous state

condition on observations

Message passing in chain-structured graphs

In "chain graphs," the message passing recursion is:

$$\alpha(x_{t+1}; y_{1:t}) = \int \alpha(x_t; y_{1:t-1}) \, p(y_t \mid x_t) \, p(x_{t+1} \mid x_t) \, \mathrm{d}x_t$$

Few models admit closed form solutions.

I.e. the Kalman filter.

- The notable exception: linear Gaussian dynamics and observations.
Approximate inference in nonlinear dynamical systems with Gaussian noise

 $\mathbf{x}_{t} \sim \mathcal{N}(f(\mathbf{x}_{t-1}), \mathbf{Q})$ $\mathbf{y}_{t} \sim \mathcal{N}(g(\mathbf{x}_{t}), \mathbf{R})$

Many approximate inference methods: **Extended Kalman Filter**: linearize around the current posterior mean

Unscented Kalman filter: approximate moments using sigma points

<u>Generalized Gaussian Filter</u>: approximate moments using Gauss-Hermite quadrature

Sequential Monte Carlo / particle filtering

Markov chain Monte Carlo (MCMC)

Variational Inference

Sequential Monte Carlo (SMC)

$$\alpha(x_{t+1}; y_{1:t}) = \int \alpha(x_t; y_{1:t-1}) p(y_t \mid x_t) p(x_{t+1} \mid x_t) dx_t$$
$$\approx \sum_{i=1}^N w_i \delta_{x_{t+1}^{(i)}}(x_{t+1})$$

where the **importance weights** w_i are set based on the likelihood, transition, and proposal probabilities.

(We'll talk a lot more about SMC tomorrow!)

Idea: approximate the messages with collection of weighted particles

Sequential Monte Carlo

Global Parameters

Discrete Latent States

Continuous Latent States

Observed Neural Activity (Differenced $\Delta F/F_0$)

• •

Global Parameters

Discrete Latent States

Continuous Latent States

Observed **Neural Activity** (Differenced $\Delta F/F_0$)

• •

Given discrete states and parameters, the continuous states are easy to sample.

Global Parameters

Discrete Latent States

Continuous Latent States

Observed **Neural Activity** (Differenced $\Delta F/F_0$)

• •

Given continuous states and parameters, the discrete states are easy to sample.

Global Parameters

Discrete Latent States

Continuous Latent States

Observed Neural Activity (Differenced ΔF/F₀)

• •

Given continuous and discrete states, the parameters are easy to sample.

Variational Inference

Find an approximate posterior that minimizes the KL divergence to the true posterior.

Variational Inference

Find an approximate posterior that minimizes the KL divergence to the true posterior.

Minimizing KL is equivalent to maximizing the **ELBO**:

$$\mathcal{L}(\lambda) = \mathbb{E}_{q(z;\lambda)} \left[\log p(z, y; \Theta) - \log q(z; \lambda) \right] \le \log p(z, y; \Theta)$$

 $\log p(y; \Theta)$

Variational Inference

Find an approximate posterior that minimizes the KL divergence to the true posterior.

Minimizing KL is equivalent to maximizing the **ELBO**:

$$\mathcal{L}(\lambda) = \mathbb{E}_{q(z;\lambda)} \left[\log p(z, y; \Theta) - \log q(z; \lambda) \right] \le \log p(z, y; \Theta)$$

We can maximize the ELBO with (stochastic) gradient ascent, natural (preconditioned) gradient ascent, coordinate ascent, and combinations thereof.

More on this in Part 2!

 $\log p(y; \Theta)$

Learning with Expectation-Maximization

- **Idea:** iteratively maximize the marginal likelihood via a minorize-maximization (MM) algorithm.
- **E step:** Minorize the marginal log likelihood with Jensen's inequality:

 $\log p(y;\Theta) \ge \mathbb{E}_{p(z|y;\Theta_m)} \left[\log p(z,y;\Theta) - \log p(z \mid y;\Theta_m)\right]$ $\triangleq \mathcal{L}(\Theta; \Theta_m).$

M step: Update parameters by **maximizing** the **bound**:

$$\Theta_{m+1} \leftarrow \underset{\Theta}{\operatorname{arg\,max}} \mathcal{L}(\Theta; \Theta_m).$$

- Equivalently, this is **coordinate ascent** on parameters and the space of posterior distributions.
- We often substitute approximate posteriors in the minorization step, though we sacrifice some guarantees in doing so.

Part I: Foundations

- Motivating Examples
- State Space Models (SSMs)
 - Hidden Markov Models
 - Linear Dynamical Systems
 - Nonlinear & Switching Linear Dynamical Systems
- Learning and Inference Algorithms
 - **Expectation-Maximization**
 - Message Passing
 - Approximate Inference (E/UKF, SMC, VI)
- Code Pointers

Outline

https://probml.github.io/dynamax/index.html

Further Reading

https://probml.github.io/book2

https://users.aalto.fi/~ssarkka/pub/cup_book_online_20131111.pdf

Part I: Foundations

- Motivating Examples
- State Space Models (SSMs)
 - Hidden Markov Models
 - Linear Dynamical Systems
 - Nonlinear & Switching Linear Dynamical Systems
- Learning and Inference Algorithms
 - **Expectation-Maximization**
 - Message Passing
 - Approximate Inference (E/UKF, SMC, VI)
- Code Pointers

Outline

Part II: Trends

- Better Models
 - Time-Warped and Keypoint-MoSeq
 - Simple State Space Layers (S5)

Better Algorithms

- Variational Laplace-EM
- Smoothing Inference with Twisted Objectives (SIXO)
- Structured Variational Autoencoders (SVAE)

Acknowledgements

Code:https://github.com/lindermanlabWebsite:https://web.stanford.edu/~swl1/

Laplace Approximation

1. View the joint as an unnormalized density on latent variables.

2. Find the mode.

 $x^* = \arg\max P^*(x)$

$$P^*(x) = p(x, y)$$
$$Z_P = \int P^*(x) \, \mathrm{d}x = p(y)$$

lr

3. Form a 2nd order Taylor approximation around the mode.

4. Exponentiate to get an unnormalized Gaussian. Compute its normalization constant.

$$\ln Q^*(x) = \ln P^*(x^*) - \frac{1}{2}(x - x^*)^{\mathsf{T}} A(x - x^*)$$
$$A = -\nabla^2 \ln P^*(x)$$
$$Z_P \approx Z_Q = P^*(x^*)(2\pi)^{\frac{D}{2}} |A|^{-\frac{1}{2}}$$

Graphics adapted from MacKay (2003, Ch 27)

