Cost-Effective Mounting Solution

Michael Pena Kendeda Symposium

EDS

FedEx

Occupancy Sensor

- What is it?
- How does it work?
- What is the problem?
 - Use cases
- What is my solution?

Types of Frames around Campus

Door Type	Number found
Aluminum Exterior	15
Aluminum Interior	7
Steel Exterior	0
Steel Interior	3

Home Frame Material: Wood Type: Lip (Very tiny < 0.1") Kendeda Frame Material: Aluminum Type: Lip, about 2" thick, 1" deep Weber Interior Frame Material: Coated Steel Type: Lip (Very Tiny < 0.1") Con: Coated Steel has weaker magnetic field Weber Exterior Frame Material: Aluminum Type: Lip 2" thick, 1" deep

Tech

Aerospace Systems Design Laboratory

Types of Frames Outside Campus

- Frames outside Campus
- Business
 - Aluminum Frame with lip
 - Steel Flat frame
- Residential Buildings
 - Wood frames around entrances
 - Common Area had steel framed open doorway
- Industrial Building
 - Main Entrances usually garage style door
 - Aluminum Frame with Lip

Images used under creative commons license

Georgia Aerospace Systems Tech Design Laboratory

Inspiration for Mounting Hardware

Lathe Tool Mount

- Allows for tools to be swapped out easily
- Easy Adjustment for vertical height
- Clamps
 - Easy to adjust and secure
 - Can hold things in place really well
- Other solutions
 - Adhesives
 - Permanent installations
 - Magnets

This Photo by Unknown Author is licensed under <u>CC BY-SA</u>

Design

- Version One
 - Modeled after a lathe tool holder
 - Sized for one size fits all
 - Easy to mount solution
- Changes made after Version One
 - Screws were scaled up
 - TPU used to protect framing
 - Modified attachment point

Testing

- Weight Testing
 - Its own weight
 - Brass Insert began to slip
 - 20 grams
 - 40 grams
 - 176 grams
- Mounting Data
 - Changes to hole diameter for brass inserts
 - Adding more holes to account for more weight
 - Adding TPU to protect mounting surface

Cost

- Mounting Hardware
 - Time: 4hr 20 minutes
 - Filament Usage: 176 grams
 - Cost: \$3.52
- TPU Sheet
 - Time:1hr 29 minutes
 - Filament Usage: 12 g
 - Cost: 60 cents
- Brass Inserts
 - Cost: 34 cents per Insert
- Screws
 - Cost: < 3 cents per screw</p>
- Estimated Labor
 - < 1 cent per piece</p>
- Total: \$4.48

Michael Pena / Copyright ASDL

Conclusion

- Overall
 - Cheap
 - Effective
 - Easy to handle
 - Easy to manufacture
- Changes
 - Moments can get difficult to counteract with just a clamping design
 - Increasing clamping from screws to flat surface for more contact and grip
 - Improve casing to allow for easier installation and seamless mounting

9

Thank you

Acknowledgements: Thank you to Kendeda Advisory Board, ASDL IoT Team, Dr.Lewe, Dr.Scott, Daniel Wochnick, Hruday Shah

Michael Pena / Copyright ASDL