Developing a Low-Cost Building Occupancy Sensor

Daniel Wochnick

2024 Kendeda Microgrant Symposium

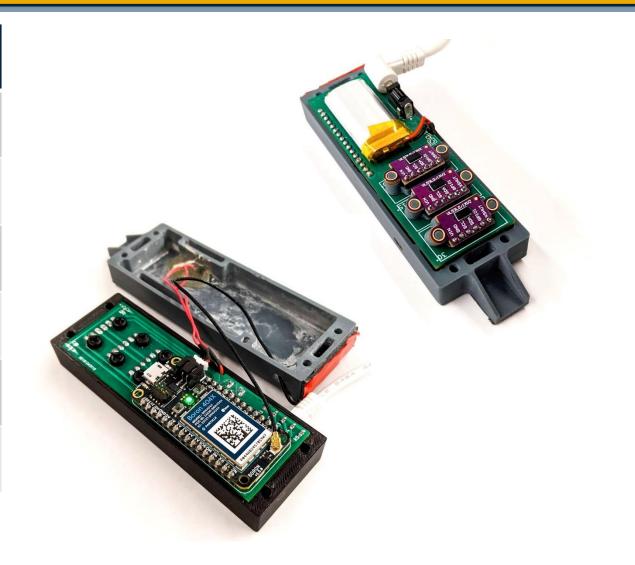
EDS

Fedex

Background & Motivation

- Broad applications of people-counting
 - Public buildings, libraries, places of worship, and other community applications
 - Retail, restaurants, and other commercial applications
 - Measuring a key variable in energy use modeling
- Sustainability-focused benefits of people-counting
 - Understand user/customer base behavior
 - Distribute resources more efficiently HVAC systems
 - Improve energy use modeling capabilities
- Our goal: Make this technology accessibly to more communities
 - Current systems are unaffordable (\$500+), we will develop a low-cost device
 - Maintain essential data collection and uploading capability
 - Non-invasive design
- Previous ASDL Research
 - Previous prototype developed

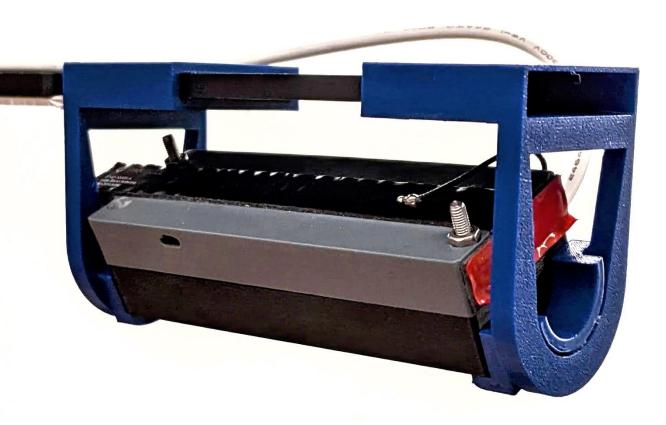
Image Credit: Untied Nations (online)


Aerospace Systems

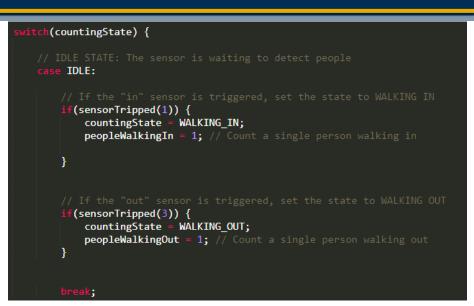
Design Laboratory

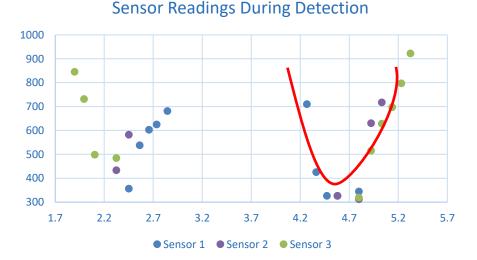
Prototype Device Architecture

Component	Capability	Cost
3D-Printed Mount and Enclosure	Attaches to door frame	\$7
Custom PCB	Connects electronic components	\$7
Onboard Battery	Provides power	\$5
LTE-enabled Microcontroller*	Runs algorithm and publishes data	\$60
3x Time-of-Flight Distance Sensors	Detects people moving through door in each direction	\$10
Total		<\$90


*A future development goal is to replace with a \$5 "spoke" chip to connect to central hub. This inexpensive chip would use the ZigBee communication protocol, which has the potential to reduce device cost to less than \$40

Daniel Wochnick / ASDL Intellectual Property


Hardware Improvements


- Emphasis on flexibility for future development
- New enclosure with access to microcontroller USB
 - Allows for real-time serial data
- 3D-printed variable angle mount
 - Interfaces with existing mounting hardware
 - Allows for testing of different sensor positions without new PCB or casing
 - Testbed for double-door design
 - 3D printer-friendly design

Software Improvements

- Laying groundwork for future development
- Connectivity troubleshooting
- Rewrote algorithm using basic state machine
 - Increased human readability
 - Allow for additional modularity
- Experimented with active thresholds
 - Sensors can be triggered based on relative thresholds in addition to static thresholds as before
 - Would improve detection of groups
 - Ultimately unsuccessful
- Wrote serial port reader in MATLAB
 - Parses sensor measurement and people counting data
 - Exports data to a .CSV file for plotting and analysis
 - Attempted to include real-time plotting
 - Ultimately decided to focus elsewhere

Daniel Wochnick / ASDL Intellectual Property

Testing and Results

- Small-scale device testing assessed the responsiveness of the sensors and algorithm in a controlled environment
 - The device performed extremely well, but testing conditions were idealized
 - The device can work well with the correct algorithm and physical implementation
- Results did not translate to real-world device testing at the Kendeda building
 - The sensor performed poorly and inconsistently in these test conditions
- Qualitative and quantitative findings suggest several factors are to blame
 - Limited effective range of the sensor (~1 m) combined with a tall door frame
 - Door mechanism obstructions and off-center mounting location
 - Measurement frequency is limited by hardware and loop time, leads to data blips

Small-Scale Test Data			Real World Test Data				
Manually Counted In	Sensor Detected In	Manually Counted Out	Sensor Detected Out	Manually Counted In	Sensor Detected In	Manually Counted Out	Sensor Detected Out
101	100	101	100	94	36	98	34
Error In	1%	Error Out	1%	Error In	62%	Error Out	65%

Next Steps

- Conclusions
 - The device hardware has the necessary capability to meet design requirements
 - Low cost
 - Adequate sensor performance
 - The current device is not performing as expected in a real-world environment
 - More work is needed to improve the mounting and algorithm of the device
- Future Work
 - Reduce algorithm complexity and minimize loop time
 - Optimize using sensor library code documentation
 - Systematically test different mounting locations
 - Device angle relative to ground
 - Mounted on the side of the doorframe
 - Assess feasibility of current design after tuning
 - Assess scalability of the device
 - Optimize design for final production
 - Develop dual-array variant for double doors
 - Research and consider implementing a ZigBee chip
 - Replace most expensive component
 - Cut device cost in half
 - Leverage central hub of internet-of-things (IoT) network

Closing Remarks

- Thank you all for your support!
 - Kendeda Building Advisory Board
 - Aerospace Systems Design Laboratory
 - Dr. Jung-Ho Lewe and Dr. Scott Duncan
 - Michael Peña and Hruday Shah
 - Alex Lomis and previous ASDL researchers
- Any questions?

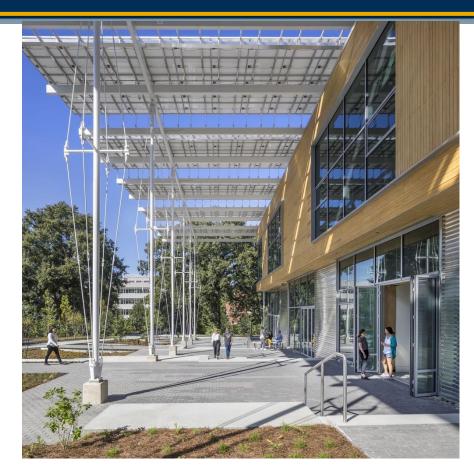


Photo Credit: Jonathan Hillyer (online)