Ronak Agarwal, Shyamanth Kudum, Sohan Malladi, Arnav Patidar, and Rohit Prasanna

BinVision

Table of contents

01

Mission

Introduce our mission

02

Software

Our software developments

03

Hardware

Our hardware components

04

Outlook

What is the future of BinVision?

Mission

 \Rightarrow

C

 \checkmark

Mission

Problem

- Currently, less than 30% of what is put in Georgia Tech's recycling bins are actually recycled.
- This is not representative of the aims of the Zero Waste initiative set forth by President Cabrera.
- One of the main contributing factors to that statistic is waste misclassification

Solution

- What if there was a way for students, faculty, and staff to quickly identify which bin to throw away their waste?
- A module that uses computer vision to identify contamination percentage and material of the waste being thrown away

Zero Waste Initiative

Solid Waste

Non Hazardous waste should be dealt with in an efficient and effective manner.

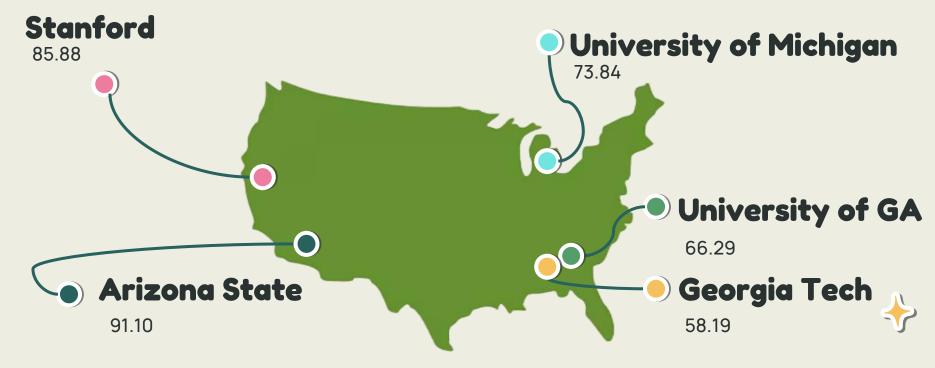
Recycling

Recycling should become less of a hassle and more accessible with more recycling locations on campus.

Awareness

For Zero Waste to work, everyone on campus must participate and understand the importance of Zero Waste.

17,312,100


Pounds of Waste put in Landfills by Georgia Tech in 2021

How do we compare to other schools?

BinVision!

↔

What it is

BinVision is a **waste classification module** that is broken up into software and hardware.

Software - full stack web application that employs **machine learning** and cloud storage to accurately identify waste as **classifies it based on camera** input, storing statistics.

Hardware - a **raspberry pi based module** that has a **proximity senso**r and camera to input data into the software end

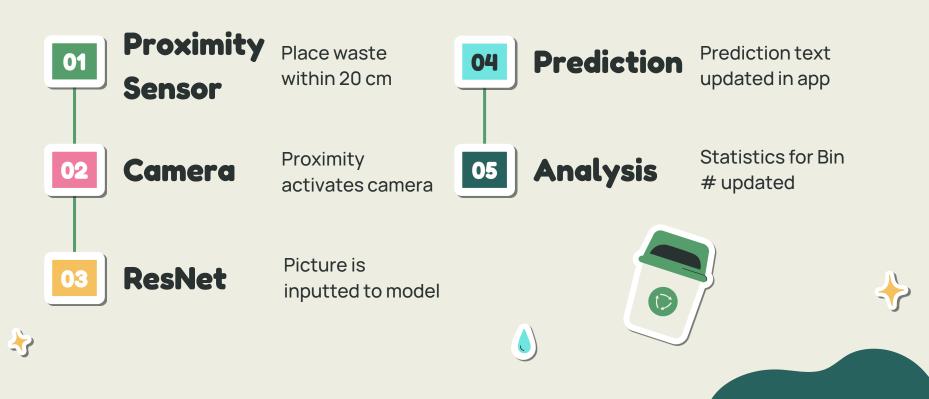
What it Solves

Recycling

BinVision decreases recycling contamination by increasing the recycling accuracy

Awareness

BinVision increases awareness amongst students and faculty to what they are actually putting into each recycling bin

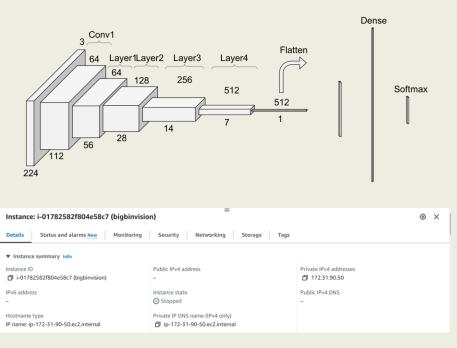


How it works

Software

 \Rightarrow

 \checkmark



Frontend

- Powered by a ResNet 34 classification model that uses previously labeled recycling images as the data set to correctly provide an output.
- Connected to the frontend using a flask server and node to deploy the web application
- Machine learning model is deployed on an AWS EC2 instance

Statistics

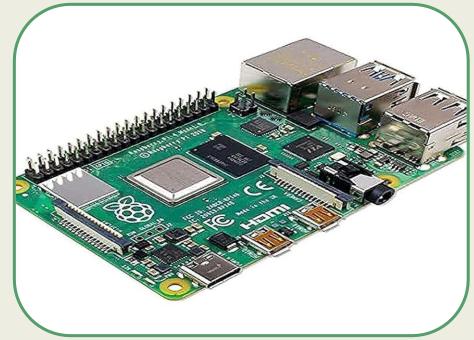
- BinVision keeps track of all items recycled, trashed or composted
- Stores all the statistics for each bin on a Google Firebase database
- Statistics can be accessed by each individual bin and displayed to user
- Overall statistics can be used to see patterns in recycling traffic and accuracy

Statistics Map Leaderboard				
		Leaderboard		
Location	Bin Number	Sort by Items Recycled	Sort by Items Trashed	Sort by Items Composted
Campus Recreation Center		529	314	228
McCamish Pavillion		33		
Glenn Residence Hall				
Price Gilbert Memorial Library				
Klaus Advanced Computing Building				
Tech Tower				
John Lewis Student Center				

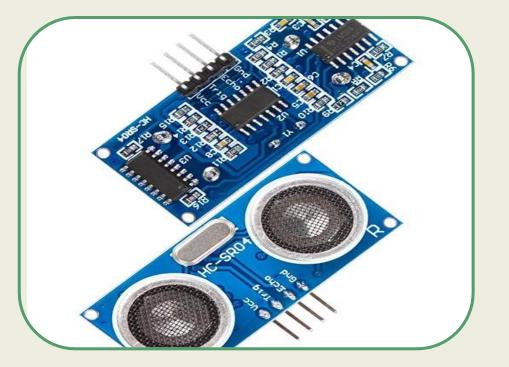
Hardware

 \Rightarrow

5 Components for Hardware


Ultrasonic sensor to detect user input

3D printed Case that is attached to recycling bin



Raspberry Pi

- A mini computer that runs all the frontend code, camera, and proximity sensor code on it locally
- Acts as the central point for the proximity sensor and the camera, allowing every module to be fine-tuned in the future

Proximity Sensor

- We only want the output to be displayed if a user is close enough where they are presenting waste
- Ultrasonic wave sensor that calculator distance by constantly sending out waves and seeing how long it takes for the wave to come back and hit the receiver.
- Camera input is only fed into the model when the proximity sensor detects distance less than 10 cm

Camera

- 1920x1080p HD camera that takes a picture of the waste once it reaches 10 cm away from the module.
- Code sends the image taken by the camera to the AWS EC2 instance for the prediction.
- Camera resets every couple of seconds when it senses something 10 cm away.

Outlook

 \Rightarrow

Next Steps

Battery Power

Aim to make the module battery powered

Cross Campus

Implement more modules around campus

Self-Sorting

Implement hardware to sort waste based on prediction

Statistics

Draw meaningful conclusions from statistics

Variance Tests

Compare actual images taken vs predictions

Educate

Educate students about the importance of proper identification of waste

Do you have any questions?

