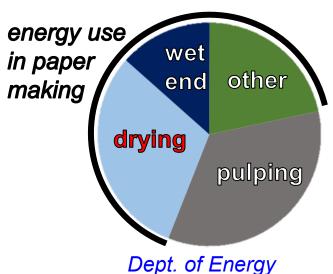


Solving Rewet to Produce Drier Web

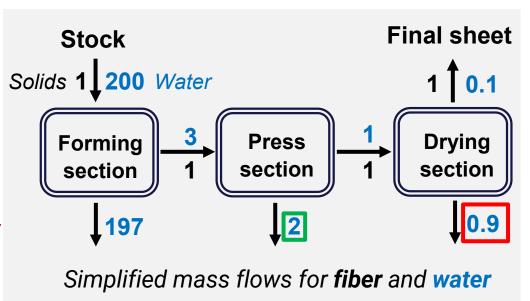
Sumner Dudick, Dennis Hess, Victor Breedveld


School of Chemical & Biomolecular Engineering & Renewable Bioproducts Institute

Georgia Institute of Technology

Evaporative Drying in Papermaking

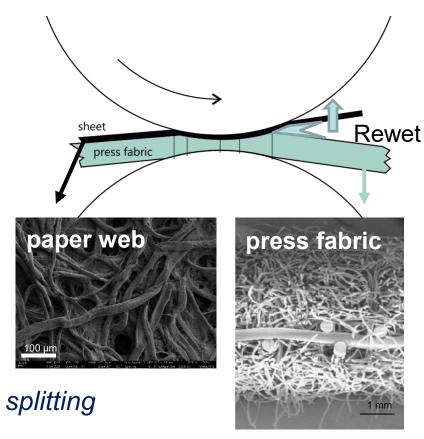
- Pulp & Paper industry consumes significant energy
 - 8.4 quadrillion BTU annually
 as much as France!
 - 4th largest industry sector globally
- 30% used in a single process
 - Evaporative drying
 - High latent heat of water in the sheet
- Industry Holy Grail:
 "Drier web entering the dryer" (APPTI Roadmap)


Papermaking Process

- Purpose of the machine
 - Form and consolidate the web
 - Dewater sheet to final dryness
- Three increasingly energyintensive stages
 - Forming section:gravity/vacuum
 - Press section: mechanical
 - Dryer section: thermal

Dryer removes relatively small fraction of total water

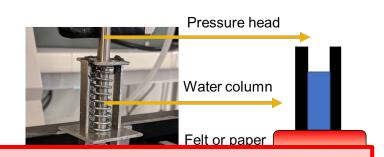
→ Small improvements in water removal in press section can yield big energy savings



Press Section

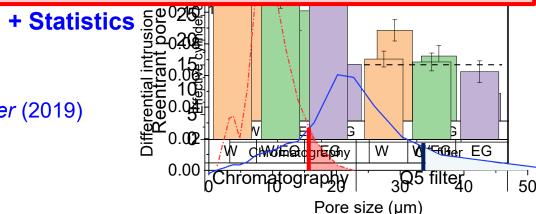
"Remove water from a sponge by pressing against another sponge"

- Rewet occurs upon pressure relief
 - Expelled water returns to the web post-nip
 - Exit moisture ratio can be 50% higher than in-nip minimum
- Flow rewet
 - Capillary forces soak water back
- Separation rewet
 - Interstitial water sides with web upon splitting



Understanding and controlling transport in porous media essential to improved dewatering

Engineering Barriers Against Rewet


Original idea:

 Create hydrophobicity gradients in felts/paper via plasma-assisted deposition of fluorocarbon film

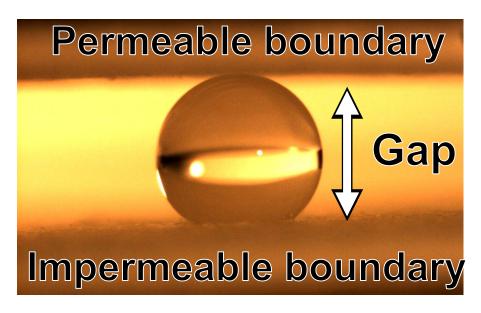
Creating a hydrophobic barrier in press felt requires:

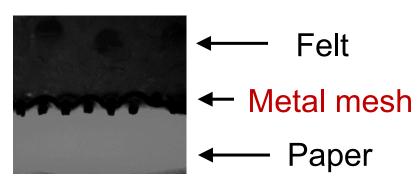
- Too thin yarns
- Too small pores (clogging, low permeability)
- → Not technically feasible

Cimadoro et al., Soft Matter (2019)

Preventing Rewet – New Concept

"What if the fabric and paper never touch?"

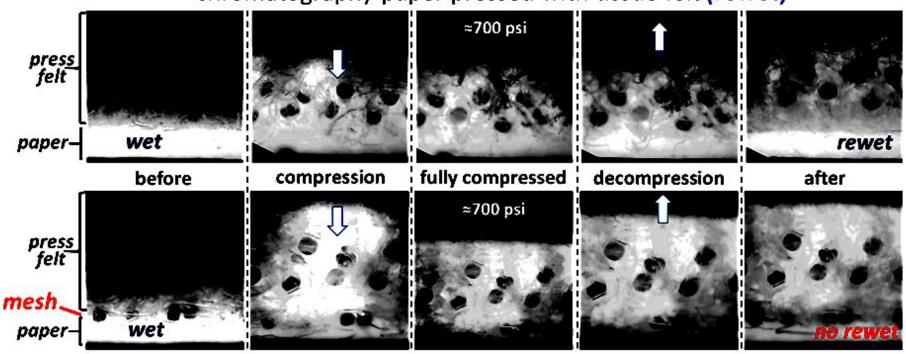

Observation:


Water can carry itself across an open gap and cut the liquid bridge at end of transfer

Desired boundary conditions:

- Fabric is permeable
- Paper web is impermeable
- Porous spacer layer to cut water bridges
- → Can be achieved under nip pressure conditions if:

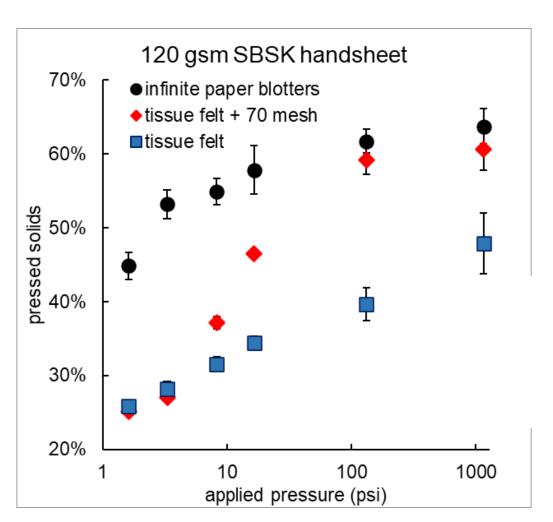
$$E_{\text{paper}} < P_{\text{nip}} < E_{\text{felt}} \le E_{\text{spacer}}$$



Preventing Rewet: Stiff Spacer Layer

Video frames

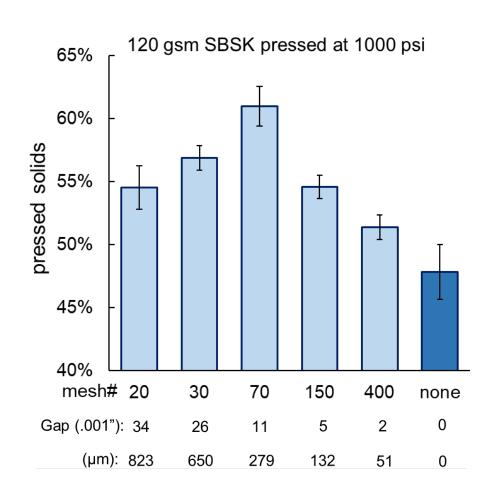
chromatography paper pressed with tissue felt (rewet)



chromatography paper pressed with tissue felt + #30 mesh (no rewet)

Preventing Rewet – Experiments

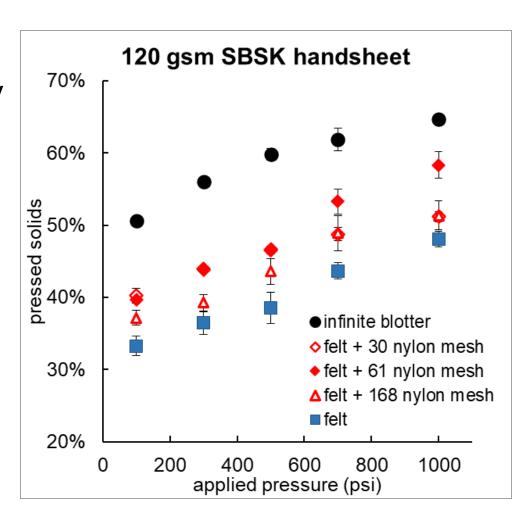
- Screw press
 - Spatially uniform pressure distribution
- Force sensor used to determine applied stress
 - Up to 10 MPa
- SBSK handsheets
 - Southern Bleached Softwood Kraft
 - Standard pulp furnish in many applications
- Press solids: %solids after pressing



- Initial solids = 25%
 - Mimics papermaking
- The wet web pressed three times at a given pressure
 - Simulates series of nips
- Infinite blotters captures theoretical limit of no rewet
 - Mesh closes gap between existing technology and the ideal limit
 - → 42% reduction in dryer load

- The structure of the spacer can be optimized
- Too thick
 - Poor contact between paper & felt
 - Uneven pressure distribution
 - Liquid bridge could break in middle
- Too thin
 - Felt remains in contact with paper after pressing
 - Liquid bridges more stable and less likely to break

- Optimization


provisional patent 63/270,627 (2021) Dudick et al., *Tappi J.* (accepted; 2022)

- Materials

- Metal problematic for press nips in machines
- Hypothesis: any sufficiently stiff spacer will work

$$E > 100,000 \text{ psi} \approx E_{nylon}$$

- Significant improvement in solids still observed
- Finding right spacer
 dimensions is critical
 design rather than use
 commercial meshes
- Candidate material for testing in a nip

provisional patent 63/270,627 (2021) Dudick et al., *Tappi J.* (accepted; 2022)

Open Questions and Future Work

- Dynamic testing in press nip
 - Time effects?
 - Machine direction pressure gradient effects?
- Other stiff materials with machine compatibility
- Optimize design of stiff spacer layer
 - Dimensional parameters:
 thickness, opening size, geometry
 - Pore shape
 - Surface smoothness
 - Surface chemistry
 - → Optimal design likely depends on paper grade
- Does better nip dewatering reveal upstream bottleneck?
 - → Improve drainage in forming section

Preventing Rewet – Energy Impact?

Potential energy savings

- ~\$20/ton in energy cost for sheet drying
- 330 million tons produced annually sector-wide
 - → 100 million tons affected by technology (conservative estimate)
- 20% reduction in dryer load
 - → \$400 million/year

Preventing Rewet – Carbon Impact?

Potential carbon footprint reduction

- Depends a lot on mill energy profile, which varies significantly
- Worst-case scenario:
 all energy in mill generated from fossil fuels
 → % carbon reduction ≈ % energy savings
- Better-case scenario:
 part of energy in mill already generated from low-carbon source (e.g. biomass)
 - → % carbon reduction > % energy savings (savings increase fraction of low-carbon energy)
 - → Further research/modeling needed

Acknowledgments

Renewable Bioproducts Institute @ Georgia Tech

- RBI Fellowship for Sumner Dudick
- New Fall 2023 RBI Fellowship support to continue project with Profs. Thomas, Brettmann and Luettgen

AstenJohnson

- Press felts